Shan, Caihua
SeeGera: Self-supervised Semi-implicit Graph Variational Auto-encoders with Masking
Li, Xiang, Ye, Tiandi, Shan, Caihua, Li, Dongsheng, Gao, Ming
Generative graph self-supervised learning (SSL) aims to learn node representations by reconstructing the input graph data. However, most existing methods focus on unsupervised learning tasks only and very few work has shown its superiority over the state-of-the-art graph contrastive learning (GCL) models, especially on the classification task. While a very recent model has been proposed to bridge the gap, its performance on unsupervised learning tasks is still unknown. In this paper, to comprehensively enhance the performance of generative graph SSL against other GCL models on both unsupervised and supervised learning tasks, we propose the SeeGera model, which is based on the family of self-supervised variational graph auto-encoder (VGAE). Specifically, SeeGera adopts the semi-implicit variational inference framework, a hierarchical variational framework, and mainly focuses on feature reconstruction and structure/feature masking. On the one hand, SeeGera co-embeds both nodes and features in the encoder and reconstructs both links and features in the decoder. Since feature embeddings contain rich semantic information on features, they can be combined with node embeddings to provide fine-grained knowledge for feature reconstruction. On the other hand, SeeGera adds an additional layer for structure/feature masking to the hierarchical variational framework, which boosts the model generalizability. We conduct extensive experiments comparing SeeGera with 9 other state-of-the-art competitors. Our results show that SeeGera can compare favorably against other state-of-the-art GCL methods in a variety of unsupervised and supervised learning tasks.
CAST: A Correlation-based Adaptive Spectral Clustering Algorithm on Multi-scale Data
Li, Xiang, Kao, Ben, Shan, Caihua, Yin, Dawei, Ester, Martin
We study the problem of applying spectral clustering to cluster multi-scale data, which is data whose clusters are of various sizes and densities. Traditional spectral clustering techniques discover clusters by processing a similarity matrix that reflects the proximity of objects. For multi-scale data, distance-based similarity is not effective because objects of a sparse cluster could be far apart while those of a dense cluster have to be sufficiently close. Following [16], we solve the problem of spectral clustering on multi-scale data by integrating the concept of objects' "reachability similarity" with a given distance-based similarity to derive an objects' coefficient matrix. We propose the algorithm CAST that applies trace Lasso to regularize the coefficient matrix. We prove that the resulting coefficient matrix has the "grouping effect" and that it exhibits "sparsity". We show that these two characteristics imply very effective spectral clustering. We evaluate CAST and 10 other clustering methods on a wide range of datasets w.r.t. various measures. Experimental results show that CAST provides excellent performance and is highly robust across test cases of multi-scale data.