Goto

Collaborating Authors

 Shami, Abdallah


Depth-Optimized Delay-Aware Tree (DO-DAT) for Virtual Network Function Placement

arXiv.org Artificial Intelligence

With the constant increase in demand for data connectivity, network service providers are faced with the task of reducing their capital and operational expenses while ensuring continual improvements to network performance. Although Network Function Virtualization (NFV) has been identified as a solution, several challenges must be addressed to ensure its feasibility. In this paper, we present a machine learning-based solution to the Virtual Network Function (VNF) placement problem. This paper proposes the Depth-Optimized Delay-Aware Tree (DO-DAT) model by using the particle swarm optimization technique to optimize decision tree hyper-parameters. Using the Evolved Packet Core (EPC) as a use case, we evaluate the performance of the model and compare it to a previously proposed model and a heuristic placement strategy.


Intelligent Active Queue Management Using Explicit Congestion Notification

arXiv.org Machine Learning

--As more end devices are getting connected, the Internet will become more congested. Various congestion control techniques have been developed either on transport or network layers. Active Queue Management (AQM) is a paradigm that aims to mitigate the congestion on the network layer through active buffer control to avoid overflow. However, finding the right parameters for an AQM scheme is challenging, due to the complexity and dynamics of the networks. On the other hand, the Explicit Congestion Notification (ECN) mechanism is a solution that makes visible incipient congestion on the network layer to the transport layer. In this work, we propose to exploit the ECN information to improve AQM algorithms by applying Machine Learning techniques. Our intelligent method uses an artificial neural network to predict congestion and an AQM parameter tuner based on reinforcement learning. The evaluation results show that our solution can enhance the performance of deployed AQM, using the existing TCP congestion control mechanisms. Thanks to the proliferation of smart devices and the paradigm of Internet of Things (IoT), the demand for connections to the Internet is dramatically growing.