Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Sham M. Kakade
Meta-Learning with Implicit Gradients
Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, Sergey Levine
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer.
Learning Overcomplete HMMs
Vatsal Sharan, Sham M. Kakade, Percy S. Liang, Gregory Valiant
We study the problem of learning overcomplete HMMs--those that have many hidden states but a small output alphabet. Despite having significant practical importance, such HMMs are poorly understood with no known positive or negative results for efficient learning. In this paper, we present several new results--both positive and negative--which help define the boundaries between the tractable and intractable settings. Specifically, we show positive results for a large subclass of HMMs whose transition matrices are sparse, well-conditioned, and have small probability mass on short cycles. On the other hand, we show that learning is impossible given only a polynomial number of samples for HMMs with a small output alphabet and whose transition matrices are random regular graphs with large degree. We also discuss these results in the context of learning HMMs which can capture long-term dependencies.
Meta-Learning with Implicit Gradients
Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, Sergey Levine
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer.
Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
Chi Jin, Sham M. Kakade, Praneeth Netrapalli
Matrix completion, where we wish to recover a low rank matrix by observing a few entries from it, is a widely studied problem in both theory and practice with wide applications. Most of the provable algorithms so far on this problem have been restricted to the offline setting where they provide an estimate of the unknown matrix using all observations simultaneously. However, in many applications, the online version, where we observe one entry at a time and dynamically update our estimate, is more appealing. While existing algorithms are efficient for the offline setting, they could be highly inefficient for the online setting. In this paper, we propose the first provable, efficient online algorithm for matrix completion. Our algorithm starts from an initial estimate of the matrix and then performs non-convex stochastic gradient descent (SGD). After every observation, it performs a fast update involving only one row of two tall matrices, giving near linear total runtime. Our algorithm can be naturally used in the offline setting as well, where it gives competitive sample complexity and runtime to state of the art algorithms. Our proofs introduce a general framework to show that SGD updates tend to stay away from saddle surfaces and could be of broader interests to other non-convex problems.
Towards Generalization and Simplicity in Continuous Control
Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, Sham M. Kakade
This work shows that policies with simple linear and RBF parameterizations can be trained to solve a variety of widely studied continuous control tasks, including the gym-v1 benchmarks. The performance of these trained policies are competitive with state of the art results, obtained with more elaborate parameterizations such as fully connected neural networks. Furthermore, the standard training and testing scenarios for these tasks are shown to be very limited and prone to over-fitting, thus giving rise to only trajectory-centric policies. Training with a diverse initial state distribution induces more global policies with better generalization. This allows for interactive control scenarios where the system recovers from large on-line perturbations; as shown in the supplementary video.
Learning Overcomplete HMMs
Vatsal Sharan, Sham M. Kakade, Percy S. Liang, Gregory Valiant
Provably Correct Automatic Sub-Differentiation for Qualified Programs
Sham M. Kakade, Jason D. Lee
The Cheap Gradient Principle [Griewank and Walther, 2008] -- the computational cost of computing the gradient of a scalar-valued function is nearly the same (often within a factor of 5) as that of simply computing the function itself -- is of central importance in optimization; it allows us to quickly obtain (high dimensional) gradients of scalar loss functions which are subsequently used in black box gradient-based optimization procedures. The current state of affairs is markedly different with regards to computing subderivatives: widely used ML libraries, including TensorFlow and PyTorch, do not correctly compute (generalized) subderivatives even on simple examples. This work considers the question: is there a Cheap Subgradient Principle? Our main result shows that, under certain restrictions on our library of nonsmooth functions (standard in nonlinear programming), provably correct generalized subderivatives can be computed at a computational cost that is within a (dimension-free) factor of 6 of the cost of computing the scalar function itself.