Not enough data to create a plot.
Try a different view from the menu above.
Shahabi, Cyrus
Gaussian Process for Trajectories
Nguyen, Kien, Krumm, John, Shahabi, Cyrus
The Gaussian process is a powerful and flexible technique for interpolating spatiotemporal data, especially with its ability to capture complex trends and uncertainty from the input signal. This chapter describes Gaussian processes as an interpolation technique for geospatial trajectories. A Gaussian process models measurements of a trajectory as coming from a multidimensional Gaussian, and it produces for each timestamp a Gaussian distribution as a prediction. We discuss elements that need to be considered when applying Gaussian process to trajectories, common choices for those elements, and provide a concrete example of implementing a Gaussian process.
HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting
Wang, Chenyu, Lin, Zongyu, Yang, Xiaochen, Sun, Jiao, Yue, Mingxuan, Shahabi, Cyrus
The crime forecasting is an important problem as it greatly contributes to urban safety. Typically, the goal of the problem is to predict different types of crimes for each geographical region (like a neighborhood or censor tract) in the near future. Since nearby regions usually have similar socioeconomic characteristics which indicate similar crime patterns, recent state-of-the-art solutions constructed a distance-based region graph and utilized Graph Neural Network (GNN) techniques for crime forecasting, because the GNN techniques could effectively exploit the latent relationships between neighboring region nodes in the graph. However, this distance-based pre-defined graph cannot fully capture crime correlation between regions that are far from each other but share similar crime patterns. Hence, to make an accurate crime prediction, the main challenge is to learn a better graph that reveals the dependencies between regions in crime occurrences and meanwhile captures the temporal patterns from historical crime records. To address these challenges, we propose an end-to-end graph convolutional recurrent network called HAGEN with several novel designs for crime prediction. Specifically, our framework could jointly capture the crime correlation between regions and the temporal crime dynamics by combining an adaptive region graph learning module with the Diffusion Convolution Gated Recurrent Unit (DCGRU). Based on the homophily assumption of GNN, we propose a homophily-aware constraint to regularize the optimization of the region graph so that neighboring region nodes on the learned graph share similar crime patterns, thus fitting the mechanism of diffusion convolution. It also incorporates crime embedding to model the interdependencies between regions and crime categories. Empirical experiments and comprehensive analysis on two real-world datasets showcase the effectiveness of HAGEN.
Towards Accurate Spatiotemporal COVID-19 Risk Scores using High Resolution Real-World Mobility Data
Rambhatla, Sirisha, Zeighami, Sepanta, Shahabi, Kameron, Shahabi, Cyrus, Liu, Yan
As countries look towards re-opening of economic activities amidst the ongoing COVID-19 pandemic, ensuring public health has been challenging. While contact tracing only aims to track past activities of infected users, one path to safe reopening is to develop reliable spatiotemporal risk scores to indicate the propensity of the disease. Existing works which aim to develop risk scores either rely on compartmental model-based reproduction numbers (which assume uniform population mixing) or develop coarse-grain spatial scores based on reproduction number (R0) and macro-level density-based mobility statistics. Instead, in this paper, we develop a Hawkes process-based technique to assign relatively fine-grain spatial and temporal risk scores by leveraging high-resolution mobility data based on cell-phone originated location signals. While COVID-19 risk scores also depend on a number of factors specific to an individual, including demography and existing medical conditions, the primary mode of disease transmission is via physical proximity and contact. Therefore, we focus on developing risk scores based on location density and mobility behaviour. We demonstrate the efficacy of the developed risk scores via simulation based on real-world mobility data. Our results show that fine-grain spatiotemporal risk scores based on high-resolution mobility data can provide useful insights and facilitate safe re-opening.
Kartta Labs: Collaborative Time Travel
Tavakkol, Sasan, Han, Feng, Mayer, Brandon, Phillips, Mark, Shahabi, Cyrus, Chiang, Yao-Yi, Kiveris, Raimondas
We introduce the modular and scalable design of Kartta Labs, an open source, open data, and scalable system for virtually reconstructing cities from historical maps and photos. Kartta Labs relies on crowdsourcing and artificial intelligence consisting of two major modules: Maps and 3D models. Each module, in turn, consists of sub-modules that enable the system to reconstruct a city from historical maps and photos. The result is a spatiotemporal reference that can be used to integrate various collected data (curated, sensed, or crowdsourced) for research, education, and entertainment purposes. The system empowers the users to experience collaborative time travel such that they work together to reconstruct the past and experience it on an open source and open data platform.
Spatial Privacy Pricing: The Interplay between Privacy, Utility and Price in Geo-Marketplaces
Nguyen, Kien, Krumm, John, Shahabi, Cyrus
A geo-marketplace allows users to be paid for their location data. Users concerned about privacy may want to charge more for data that pinpoints their location accurately, but may charge less for data that is more vague. A buyer would prefer to minimize data costs, but may have to spend more to get the necessary level of accuracy. We call this interplay between privacy, utility, and price \emph{spatial privacy pricing}. We formalize the issues mathematically with an example problem of a buyer deciding whether or not to open a restaurant by purchasing location data to determine if the potential number of customers is sufficient to open. The problem is expressed as a sequential decision making problem, where the buyer first makes a series of decisions about which data to buy and concludes with a decision about opening the restaurant or not. We present two algorithms to solve this problem, including experiments that show they perform better than baselines.
Adversarial Representation Learning on Large-Scale Bipartite Graphs
He, Chaoyang, Xie, Tian, Rong, Yu, Huang, Wenbing, Huang, Junzhou, Ren, Xiang, Shahabi, Cyrus
Graph representation on large-scale bipartite graphs is central for a variety of applications, ranging from social network analysis to recommendation system development. Existing methods exhibit two key drawbacks: 1. unable to characterize the inconsistency of the node features within the bipartite-specific structure; 2. unfriendly to support large-scale bipartite graphs. To this end, we propose ABCGraph, a scalable model for unsupervised learning on large-scale bipartite graphs. At its heart, ABCGraph utilizes the proposed Bipartite Graph Convolutional Network (BGCN) as the encoder and adversarial learning as the training loss to learn representations from nodes in two different domains and bipartite structures, in an unsupervised manner. Moreover, we devise a cascaded architecture to capture the multi-hop relationship in bipartite structure and improves the scalability as well. Extensive experiments on multiple datasets of varying scales verify the effectiveness of ABCGraph compared to state-of-the-arts. For the experiment on a real-world large-scale bipartite graph system, fast training speed and low memory cost demonstrate the scalability of ABCGraph model.
Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting
Li, Yaguang, Yu, Rose, Shahabi, Cyrus, Liu, Yan
Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% - 15% over state-of-the-art baselines.