Not enough data to create a plot.
Try a different view from the menu above.
Shah, Ashish
Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval
Jang, Young Kyun, Huynh, Dat, Shah, Ashish, Chen, Wen-Kai, Lim, Ser-Nam
Composed Image Retrieval (CIR) is a complex task that retrieves images using a query, which is configured with an image and a caption that describes desired modifications to that image. Supervised CIR approaches have shown strong performance, but their reliance on expensive manually-annotated datasets restricts their scalability and broader applicability. To address these issues, previous studies have proposed pseudo-word token-based Zero-Shot CIR (ZS-CIR) methods, which utilize a projection module to map images to word tokens. However, we conjecture that this approach has a downside: the projection module distorts the original image representation and confines the resulting composed embeddings to the text-side. In order to resolve this, we introduce a novel ZS-CIR method that uses Spherical Linear Interpolation (Slerp) to directly merge image and text representations by identifying an intermediate embedding of both. Furthermore, we introduce Text-Anchored-Tuning (TAT), a method that fine-tunes the image encoder while keeping the text encoder fixed. TAT closes the modality gap between images and text, making the Slerp process much more effective. Notably, the TAT method is not only efficient in terms of the scale of the training dataset and training time, but it also serves as an excellent initial checkpoint for training supervised CIR models, thereby highlighting its wider potential. The integration of the Slerp-based ZS-CIR with a TAT-tuned model enables our approach to deliver state-of-the-art retrieval performance across CIR benchmarks.
Universal Pyramid Adversarial Training for Improved ViT Performance
Chiang, Ping-yeh, Zhou, Yipin, Poursaeed, Omid, Shukla, Satya Narayan, Shah, Ashish, Goldstein, Tom, Lim, Ser-Nam
Recently, Pyramid Adversarial training (Herrmann et al., 2022) has been shown to be very effective for improving clean accuracy and distribution-shift robustness of vision transformers. However, due to the iterative nature of adversarial training, the technique is up to 7 times more expensive than standard training. To make the method more efficient, we propose Universal Pyramid Adversarial training, where we learn a single pyramid adversarial pattern shared across the whole dataset instead of the sample-wise patterns. With our proposed technique, we decrease the computational cost of Pyramid Adversarial training by up to 70% while retaining the majority of its benefit on clean performance and distribution-shift robustness. In addition, to the best of our knowledge, we are also the first to find that universal adversarial training can be leveraged to improve clean model performance.
Object-Centric Unsupervised Image Captioning
Meng, Zihang, Yang, David, Cao, Xuefei, Shah, Ashish, Lim, Ser-Nam
Training an image captioning model in an unsupervised manner without utilizing annotated image-caption pairs is an important step towards tapping into a wider corpus of text and images. In the supervised setting, image-caption pairs are "well-matched", where all objects mentioned in the sentence appear in the corresponding image. These pairings are, however, not available in the unsupervised setting. To overcome this, a main school of research that has been shown to be effective in overcoming this is to construct pairs from the images and texts in the training set according to their overlap of objects. Unlike in the supervised setting, these constructed pairings are however not guaranteed to have fully overlapping set of objects. Our work in this paper overcomes this by harvesting objects corresponding to a given sentence from the training set, even if they don't belong to the same image. When used as input to a transformer, such mixture of objects enable larger if not full object coverage, and when supervised by the corresponding sentence, produced results that outperform current state of the art unsupervised methods by a significant margin. Building upon this finding, we further show that (1) additional information on relationship between objects and attributes of objects also helps in boosting performance; and (2) our method also extends well to non-English image captioning, which usually suffers from a scarcer level of annotations. Our findings are supported by strong empirical results.