Goto

Collaborating Authors

 Shafiee, Mohammad Javad


Vulnerability Under Adversarial Machine Learning: Bias or Variance?

arXiv.org Machine Learning

Prior studies have unveiled the vulnerability of the deep neural networks in the context of adversarial machine learning, leading to great recent attention into this area. One interesting question that has yet to be fully explored is the bias-variance relationship of adversarial machine learning, which can potentially provide deeper insights into this behaviour. The notion of bias and variance is one of the main approaches to analyze and evaluate the generalization and reliability of a machine learning model. Although it has been extensively used in other machine learning models, it is not well explored in the field of deep learning and it is even less explored in the area of adversarial machine learning. In this study, we investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network and analyze how adversarial perturbations can affect the generalization of a network. We derive the bias-variance trade-off for both classification and regression applications based on two main loss functions: (i) mean squared error (MSE), and (ii) cross-entropy. Furthermore, we perform quantitative analysis with both simulated and real data to empirically evaluate consistency with the derived bias-variance tradeoffs. Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation from a bias-variance point of view and how this type of perturbation would change the performance of a network. Moreover, given these new theoretical findings, we introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies (e.g., PGD) while providing a high success rate in fooling deep neural networks in lower perturbation magnitudes.


FermiNets: Learning generative machines to generate efficient neural networks via generative synthesis

arXiv.org Artificial Intelligence

The tremendous potential exhibited by deep learning is often offset by architectural and computational complexity, making widespread deployment a challenge for edge scenarios such as mobile and other consumer devices. To tackle this challenge, we explore the following idea: Can we learn generative machines to automatically generate deep neural networks with efficient network architectures? In this study, we introduce the idea of generative synthesis, which is premised on the intricate interplay between a generator-inquisitor pair that work in tandem to garner insights and learn to generate highly efficient deep neural networks that best satisfies operational requirements. What is most interesting is that, once a generator has been learned through generative synthesis, it can be used to generate not just one but a large variety of different, unique highly efficient deep neural networks that satisfy operational requirements. Experimental results for image classification, semantic segmentation, and object detection tasks illustrate the efficacy of generative synthesis in producing generators that automatically generate highly efficient deep neural networks (which we nickname FermiNets) with higher model efficiency and lower computational costs (reaching >10x more efficient and fewer multiply-accumulate operations than several tested state-of-the-art networks), as well as higher energy efficiency (reaching >4x improvements in image inferences per joule consumed on a Nvidia Tegra X2 mobile processor). As such, generative synthesis can be a powerful, generalized approach for accelerating and improving the building of deep neural networks for on-device edge scenarios.


Evolution in Groups: A deeper look at synaptic cluster driven evolution of deep neural networks

arXiv.org Machine Learning

A promising paradigm for achieving highly efficient deep neural networks is the idea of evolutionary deep intelligence, which mimics biological evolution processes to progressively synthesize more efficient networks. A crucial design factor in evolutionary deep intelligence is the genetic encoding scheme used to simulate heredity and determine the architectures of offspring networks. In this study, we take a deeper look at the notion of synaptic cluster-driven evolution of deep neural networks which guides the evolution process towards the formation of a highly sparse set of synaptic clusters in offspring networks. Utilizing a synaptic cluster-driven genetic encoding, the probabilistic encoding of synaptic traits considers not only individual synaptic properties but also inter-synaptic relationships within a deep neural network. This process results in highly sparse offspring networks which are particularly tailored for parallel computational devices such as GPUs and deep neural network accelerator chips. Comprehensive experimental results using four well-known deep neural network architectures (LeNet-5, AlexNet, ResNet-56, and DetectNet) on two different tasks (object categorization and object detection) demonstrate the efficiency of the proposed method. Cluster-driven genetic encoding scheme synthesizes networks that can achieve state-of-the-art performance with significantly smaller number of synapses than that of the original ancestor network. ($\sim$125-fold decrease in synapses for MNIST). Furthermore, the improved cluster efficiency in the generated offspring networks ($\sim$9.71-fold decrease in clusters for MNIST and a $\sim$8.16-fold decrease in clusters for KITTI) is particularly useful for accelerated performance on parallel computing hardware architectures such as those in GPUs and deep neural network accelerator chips.


Evolutionary Synthesis of Deep Neural Networks via Synaptic Cluster-driven Genetic Encoding

arXiv.org Machine Learning

There has been significant recent interest towards achieving highly efficient deep neural network architectures. A promising paradigm for achieving this is the concept of evolutionary deep intelligence, which attempts to mimic biological evolution processes to synthesize highly-efficient deep neural networks over successive generations. An important aspect of evolutionary deep intelligence is the genetic encoding scheme used to mimic heredity, which can have a significant impact on the quality of offspring deep neural networks. Motivated by the neurobiological phenomenon of synaptic clustering, we introduce a new genetic encoding scheme where synaptic probability is driven towards the formation of a highly sparse set of synaptic clusters. Experimental results for the task of image classification demonstrated that the synthesized offspring networks using this synaptic cluster-driven genetic encoding scheme can achieve state-of-the-art performance while having network architectures that are not only significantly more efficient (with a ~125-fold decrease in synapses for MNIST) compared to the original ancestor network, but also tailored for GPU-accelerated machine learning applications.


Domain Adaptation and Transfer Learning in StochasticNets

arXiv.org Machine Learning

Transfer learning is a recent field of machine learning research that aims to resolve the challenge of dealing with insufficient training data in the domain of interest. This is a particular issue with traditional deep neural networks where a large amount of training data is needed. Recently, StochasticNets was proposed to take advantage of sparse connectivity in order to decrease the number of parameters that needs to be learned, which in turn may relax training data size requirements. In this paper, we study the efficacy of transfer learning on StochasticNet frameworks. Experimental results show ~7% improvement on StochasticNet performance when the transfer learning is applied in training step.


Efficient Deep Feature Learning and Extraction via StochasticNets

arXiv.org Machine Learning

Deep neural networks are a powerful tool for feature learning and extraction given their ability to model high-level abstractions in highly complex data. One area worth exploring in feature learning and extraction using deep neural networks is efficient neural connectivity formation for faster feature learning and extraction. Motivated by findings of stochastic synaptic connectivity formation in the brain as well as the brain's uncanny ability to efficiently represent information, we propose the efficient learning and extraction of features via StochasticNets, where sparsely-connected deep neural networks can be formed via stochastic connectivity between neurons. To evaluate the feasibility of such a deep neural network architecture for feature learning and extraction, we train deep convolutional StochasticNets to learn abstract features using the CIFAR-10 dataset, and extract the learned features from images to perform classification on the SVHN and STL-10 datasets. Experimental results show that features learned using deep convolutional StochasticNets, with fewer neural connections than conventional deep convolutional neural networks, can allow for better or comparable classification accuracy than conventional deep neural networks: relative test error decrease of ~4.5% for classification on the STL-10 dataset and ~1% for classification on the SVHN dataset. Furthermore, it was shown that the deep features extracted using deep convolutional StochasticNets can provide comparable classification accuracy even when only 10% of the training data is used for feature learning. Finally, it was also shown that significant gains in feature extraction speed can be achieved in embedded applications using StochasticNets. As such, StochasticNets allow for faster feature learning and extraction performance while facilitate for better or comparable accuracy performances.


A deep-structured fully-connected random field model for structured inference

arXiv.org Machine Learning

There has been significant interest in the use of fully-connected graphical models and deep-structured graphical models for the purpose of structured inference. However, fully-connected and deep-structured graphical models have been largely explored independently, leaving the unification of these two concepts ripe for exploration. A fundamental challenge with unifying these two types of models is in dealing with computational complexity. In this study, we investigate the feasibility of unifying fully-connected and deep-structured models in a computationally tractable manner for the purpose of structured inference. To accomplish this, we introduce a deep-structured fully-connected random field (DFRF) model that integrates a series of intermediate sparse auto-encoding layers placed between state layers to significantly reduce computational complexity. The problem of image segmentation was used to illustrate the feasibility of using the DFRF for structured inference in a computationally tractable manner. Results in this study show that it is feasible to unify fully-connected and deep-structured models in a computationally tractable manner for solving structured inference problems such as image segmentation.