Goto

Collaborating Authors

 Seo, Minjoon


Effortless Integration of Memory Management into Open-Domain Conversation Systems

arXiv.org Artificial Intelligence

Open-domain conversation systems integrate multiple conversation skills into a single system through a modular approach. One of the limitations of the system, however, is the absence of management capability for external memory. In this paper, we propose a simple method to improve BlenderBot3 by integrating memory management ability into it. Since no training data exists for this purpose, we propose an automating dataset creation for memory management. Our method 1) requires little cost for data construction, 2) does not affect performance in other tasks, and 3) reduces external memory. We show that our proposed model BlenderBot3-M^3, which is multi-task trained with memory management, outperforms BlenderBot3 with a relative 4% performance gain in terms of F1 score.


TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models

arXiv.org Artificial Intelligence

Language Models (LMs) become outdated as the world changes; they often fail to perform tasks requiring recent factual information which was absent or different during training, a phenomenon called temporal misalignment. This is especially a challenging problem because the research community still lacks a coherent dataset for assessing the adaptability of LMs to frequently-updated knowledge corpus such as Wikipedia. To this end, we introduce TemporalWiki, a lifelong benchmark for ever-evolving LMs that utilizes the difference between consecutive snapshots of English Wikipedia and English Wikidata for training and evaluation, respectively. The benchmark hence allows researchers to periodically track an LM's ability to retain previous knowledge and acquire updated/new knowledge at each point in time. We also find that training an LM on the diff data through continual learning methods achieves similar or better perplexity than on the entire snapshot in our benchmark with 12 times less computational cost, which verifies that factual knowledge in LMs can be safely updated with minimal training data via continual learning. The dataset and the code are available at https://github.com/joeljang/temporalwiki.


Exploring the Benefits of Training Expert Language Models over Instruction Tuning

arXiv.org Artificial Intelligence

Recently, Language Models (LMs) instruction-tuned on multiple tasks, also known as multitask-prompted fine-tuning (MT), have shown the capability to generalize to unseen tasks. Previous work has shown that scaling the number of training tasks is the key component in making stronger MT LMs. In this work, we report an unexpected finding that an expert LM fine-tuned on just a single task can outperform an MT LM trained with 300+ different tasks on 11 different unseen datasets and on 13 datasets of the BIG-bench benchmark by a mean accuracy of 3.20% and 1.29%, respectively. This finding casts doubt on the previously held belief that simply scaling the number of tasks makes stronger MT LMs. Leveraging this finding, we further show that this distributed approach of training a separate expert LM per training task instead of a single MT LM for zero-shot inference possesses many benefits including (1) avoiding negative task transfer that often occurs during instruction tuning, (2) being able to continually learn new tasks without having to re-train on previous tasks to avoid catastrophic forgetting, and (3) showing compositional capabilities when merging individual experts together. The code is available at https://github.com/joeljang/ELM.


Semi-Parametric Video-Grounded Text Generation

arXiv.org Artificial Intelligence

Efficient video-language modeling should consider the computational cost because of a large, sometimes intractable, number of video frames. Parametric approaches such as the attention mechanism may not be ideal since its computational cost quadratically increases as the video length increases. Rather, previous studies have relied on offline feature extraction or frame sampling to represent the video efficiently, focusing on cross-modal modeling in short video clips. In this paper, we propose a semi-parametric video-grounded text generation model, SeViT, a novel perspective on scalable video-language modeling toward long untrimmed videos. Treating a video as an external data store, SeViT includes a non-parametric frame retriever to select a few query-relevant frames from the data store for a given query and a parametric generator to effectively aggregate the frames with the query via late fusion methods. Experimental results demonstrate our method has a significant advantage in longer videos and causal video understanding. Moreover, our model achieves the new state of the art on four video-language datasets, iVQA (+4.8), Next-QA (+6.9), and Activitynet-QA (+4.8) in accuracy, and MSRVTT-Caption (+3.6) in CIDEr.


Knowledge Unlearning for Mitigating Privacy Risks in Language Models

arXiv.org Artificial Intelligence

Pretrained Language Models (LMs) memorize a vast amount of knowledge during initial pretraining, including information that may violate the privacy of personal lives and identities. Previous work addressing privacy issues for language models has mostly focused on data preprocessing and differential privacy methods, both requiring re-training the underlying LM. We propose knowledge unlearning as an alternative method to reduce privacy risks for LMs post hoc. We show that simply performing gradient ascent on target token sequences is effective at forgetting them with little to no degradation of general language modeling performances for larger LMs; it sometimes even substantially improves the underlying LM with just a few iterations. We also find that sequential unlearning is better than trying to unlearn all the data at once and that unlearning is highly dependent on which kind of data (domain) is forgotten. By showing comparisons with a previous data preprocessing method and a decoding method known to mitigate privacy risks for LMs, we show that unlearning can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori while being much more efficient and robust. We release the code and dataset needed to replicate our results at https://github.com/joeljang/knowledge-unlearning.


Prompt Injection: Parameterization of Fixed Inputs

arXiv.org Artificial Intelligence

Recent works have shown that attaching prompts to the input is effective at conditioning Language Models (LM) to perform specific tasks. However, prompts are always included in the input text during inference, thus incurring substantial computational and memory overhead. Also, there is currently no straightforward method of utilizing prompts that are longer than the maximum input length of the LMs without incurring additional costs during inference. We propose Prompt Injection (PI), a novel formulation of injecting the prompt into the parameters of an LM to be an efficient alternative to attaching fixed prompts to the input. We show that in scenarios with long fixed prompts, PI can be up to 280 times more efficient in terms of total FLOPs than previous approaches. We further explore methodologies for PI and show promising results in persona-dependent conversation, semantic parsing, and zero-shot learning with task instructions. Through these explorations, we show that PI can be a promising direction for conditioning language models, especially in scenarios with long and fixed prompts.


ViSeRet: A simple yet effective approach to moment retrieval via fine-grained video segmentation

arXiv.org Artificial Intelligence

Video-text retrieval has many real-world applications such as media analytics, surveillance, and robotics. This paper presents the 1st place solution to the video retrieval track of the ICCV VALUE Challenge 2021. We present a simple yet effective approach to jointly tackle two video-text retrieval tasks (video retrieval and video corpus moment retrieval) by leveraging the model trained only on the video retrieval task. In addition, we create an ensemble model that achieves the new state-of-the-art performance on all four datasets (TVr, How2r, YouCook2r, and VATEXr) presented in the VALUE Challenge.


NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned

arXiv.org Artificial Intelligence

We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing large, redundant, retrieval corpora or the parameters of large learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.