Plotting

 Sentis, Luis


Task Hierarchical Control via Null-Space Projection and Path Integral Approach

arXiv.org Artificial Intelligence

This paper addresses the problem of hierarchical task control, where a robotic system must perform multiple subtasks with varying levels of priority. A commonly used approach for hierarchical control is the null-space projection technique, which ensures that higher-priority tasks are executed without interference from lower-priority ones. While effective, the state-of-the-art implementations of this method rely on low-level controllers, such as PID controllers, which can be prone to suboptimal solutions in complex tasks. This paper presents a novel framework for hierarchical task control, integrating the null-space projection technique with the path integral control method. Our approach leverages Monte Carlo simulations for real-time computation of optimal control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated optimal control technique. Through simulation studies, we demonstrate the effectiveness of this combined approach, showing how it overcomes the limitations of traditional


LEGATO: Cross-Embodiment Imitation Using a Grasping Tool

arXiv.org Artificial Intelligence

Cross-embodiment imitation learning enables policies trained on specific embodiments to transfer across different robots, unlocking the potential for large-scale imitation learning that is both cost-effective and highly reusable. This paper presents LEGATO, a cross-embodiment imitation learning framework for visuomotor skill transfer across varied kinematic morphologies. We introduce a handheld gripper that unifies action and observation spaces, allowing tasks to be defined consistently across robots. Using this gripper, we train visuomotor policies via imitation learning, applying a motion-invariant transformation to compute the training loss. Gripper motions are then retargeted into high-degree-of-freedom whole-body motions using inverse kinematics for deployment across diverse embodiments. Our evaluations in simulation and real-robot experiments highlight the framework's effectiveness in learning and transferring visuomotor skills across various robots. More information can be found at the project page: https://ut-hcrl.github.io/LEGATO.


Guiding Collision-Free Humanoid Multi-Contact Locomotion using Convex Kinematic Relaxations and Dynamic Optimization

arXiv.org Artificial Intelligence

Humanoid robots rely on multi-contact planners to navigate a diverse set of environments, including those that are unstructured and highly constrained. To synthesize stable multi-contact plans within a reasonable time frame, most planners assume statically stable motions or rely on reduced order models. However, these approaches can also render the problem infeasible in the presence of large obstacles or when operating near kinematic and dynamic limits. To that end, we propose a new multi-contact framework that leverages recent advancements in relaxing collision-free path planning into a convex optimization problem, extending it to be applicable to humanoid multi-contact navigation. Our approach generates near-feasible trajectories used as guides in a dynamic trajectory optimizer, altogether addressing the aforementioned limitations. We evaluate our computational approach showcasing three different-sized humanoid robots traversing a high-raised naval knee-knocker door using our proposed framework in simulation. Our approach can generate motion plans within a few seconds consisting of several multi-contact states, including dynamic feasibility in joint space.


Human Stress Response and Perceived Safety during Encounters with Quadruped Robots

arXiv.org Artificial Intelligence

Despite the rise of mobile robot deployments in home and work settings, perceived safety of users and bystanders is understudied in the human-robot interaction (HRI) literature. To address this, we present a study designed to identify elements of a human-robot encounter that correlate with observed stress response. Stress is a key component of perceived safety and is strongly associated with human physiological response. In this study a Boston Dynamics Spot and a Unitree Go1 navigate autonomously through a shared environment occupied by human participants wearing multimodal physiological sensors to track their electrocardiography (ECG) and electrodermal activity (EDA). The encounters are varied through several trials and participants self-rate their stress levels after each encounter. The study resulted in a multidimensional dataset archiving various objective and subjective aspects of a human-robot encounter, containing insights for understanding perceived safety in such encounters. To this end, acute stress responses were decoded from the human participants' ECG and EDA and compared across different human-robot encounter conditions. Statistical analysis of data indicate that on average (1) participants feel more stress during encounters compared to baselines, (2) participants feel more stress encountering multiple robots compared to a single robot and (3) participants stress increases during navigation behavior compared with search behavior.


On the Performance of Jerk-Constrained Time-Optimal Trajectory Planning for Industrial Manipulators

arXiv.org Artificial Intelligence

Jerk-constrained trajectories offer a wide range of advantages that collectively improve the performance of robotic systems, including increased energy efficiency, durability, and safety. In this paper, we present a novel approach to jerk-constrained time-optimal trajectory planning (TOTP), which follows a specified path while satisfying up to third-order constraints to ensure safety and smooth motion. One significant challenge in jerk-constrained TOTP is a non-convex formulation arising from the inclusion of third-order constraints. Approximating inequality constraints can be particularly challenging because the resulting solutions may violate the actual constraints. We address this problem by leveraging convexity within the proposed formulation to form conservative inequality constraints. We then obtain the desired trajectories by solving an $\boldsymbol n$-dimensional Sequential Linear Program (SLP) iteratively until convergence. Lastly, we evaluate in a real robot the performance of trajectories generated with and without jerk limits in terms of peak power, torque efficiency, and tracking capability.


Learned Contextual LiDAR Informed Visual Search in Unseen Environments

arXiv.org Artificial Intelligence

This paper presents LIVES: LiDAR Informed Visual Search, an autonomous planner for unknown environments. We consider the pixel-wise environment perception problem where one is given 2D range data from LiDAR scans and must label points contextually as map or non-map in the surroundings for visual planning. LIVES classifies incoming 2D scans from the wide Field of View (FoV) LiDAR in unseen environments without prior map information. The map-generalizable classifier is trained from expert data collected using a simple cart platform equipped with a map-based classifier in real environments. A visual planner takes contextual data from scans and uses this information to plan viewpoints more likely to yield detection of the search target. While conventional frontier based methods for LiDAR and multi sensor exploration effectively map environments, they are not tailored to search for people indoors, which we investigate in this paper. LIVES is baselined against several existing exploration methods in simulation to verify its performance. Finally, it is validated in real-world experiments with a Spot robot in a 20x30m indoor apartment setting. Videos of experimental validation can be found on our project website at https://sites.google.com/view/lives-2024/home.


Deep Imitation Learning for Humanoid Loco-manipulation through Human Teleoperation

arXiv.org Artificial Intelligence

We tackle the problem of developing humanoid loco-manipulation skills with deep imitation learning. The difficulty of collecting task demonstrations and training policies for humanoids with a high degree of freedom presents substantial challenges. We introduce TRILL, a data-efficient framework for training humanoid loco-manipulation policies from human demonstrations. In this framework, we collect human demonstration data through an intuitive Virtual Reality (VR) interface. We employ the whole-body control formulation to transform task-space commands by human operators into the robot's joint-torque actuation while stabilizing its dynamics. By employing high-level action abstractions tailored for humanoid loco-manipulation, our method can efficiently learn complex sensorimotor skills. We demonstrate the effectiveness of TRILL in simulation and on a real-world robot for performing various loco-manipulation tasks. Videos and additional materials can be found on the project page: https://ut-austin-rpl.github.io/TRILL.


LIVE: Lidar Informed Visual Search for Multiple Objects with Multiple Robots

arXiv.org Artificial Intelligence

This paper introduces LIVE: Lidar Informed Visual Search focused on the problem of multi-robot (MR) planning and execution for robust visual detection of multiple objects. We perform extensive real-world experiments with a two-robot team in an indoor apartment setting. LIVE acts as a perception module that detects unmapped obstacles, or Short Term Features (STFs), in Lidar observations. STFs are filtered, resulting in regions to be visually inspected by modifying plans online. Lidar Coverage Path Planning (CPP) is employed for generating highly efficient global plans for heterogeneous robot teams. Finally, we present a data model and a demonstration dataset, which can be found by visiting our project website https://sites.google.com/view/live-iros2023/home.


Learning Contact-based Navigation in Crowds

arXiv.org Artificial Intelligence

Navigation strategies that intentionally incorporate contact with humans (i.e. "contact-based" social navigation) in crowded environments are largely unexplored even though collision-free social navigation is a well studied problem. Traditional social navigation frameworks require the robot to stop suddenly or "freeze" whenever a collision is imminent. This paradigm poses two problems: 1) freezing while navigating a crowd may cause people to trip and fall over the robot, resulting in more harm than the collision itself, and 2) in very dense social environments where collisions are unavoidable, such a control scheme would render the robot unable to move and preclude the opportunity to study how humans incorporate robots into these environments. However, if robots are to be meaningfully included in crowded social spaces, such as busy streets, subways, stores, or other densely populated locales, there may not exist trajectories that can guarantee zero collisions. Thus, adoption of robots in these environments requires the development of minimally disruptive navigation plans that can safely plan for and respond to contacts. We propose a learning-based motion planner and control scheme to navigate dense social environments using safe contacts for an omnidirectional mobile robot. The planner is evaluated in simulation over 360 trials with crowd densities varying between 0.0 and 1.6 people per square meter. Our navigation scheme is able to use contact to safely navigate in crowds of higher density than has been previously reported, to our knowledge.


Learning to Walk by Steering: Perceptive Quadrupedal Locomotion in Dynamic Environments

arXiv.org Artificial Intelligence

We tackle the problem of perceptive locomotion in dynamic environments. In this problem, a quadrupedal robot must exhibit robust and agile walking behaviors in response to environmental clutter and moving obstacles. We present a hierarchical learning framework, named PRELUDE, which decomposes the problem of perceptive locomotion into high-level decision-making to predict navigation commands and low-level gait generation to realize the target commands. In this framework, we train the high-level navigation controller with imitation learning on human demonstrations collected on a steerable cart and the low-level gait controller with reinforcement learning (RL). Therefore, our method can acquire complex navigation behaviors from human supervision and discover versatile gaits from trial and error. We demonstrate the effectiveness of our approach in simulation and with hardware experiments. Videos and code can be found at the project page: https://ut-austin-rpl.github.io/PRELUDE.