Not enough data to create a plot.
Try a different view from the menu above.
Sengupta, Ushnish
A Collaborative, Human-Centred Taxonomy of AI, Algorithmic, and Automation Harms
Abercrombie, Gavin, Benbouzid, Djalel, Giudici, Paolo, Golpayegani, Delaram, Hernandez, Julio, Noro, Pierre, Pandit, Harshvardhan, Paraschou, Eva, Pownall, Charlie, Prajapati, Jyoti, Sayre, Mark A., Sengupta, Ushnish, Suriyawongkul, Arthit, Thelot, Ruby, Vei, Sofia, Waltersdorfer, Laura
This paper introduces a collaborative, human-centered taxonomy of AI, algorithmic and automation harms. We argue that existing taxonomies, while valuable, can be narrow, unclear, typically cater to practitioners and government, and often overlook the needs of the wider public. Drawing on existing taxonomies and a large repository of documented incidents, we propose a taxonomy that is clear and understandable to a broad set of audiences, as well as being flexible, extensible, and interoperable. Through iterative refinement with topic experts and crowdsourced annotation testing, we propose a taxonomy that can serve as a powerful tool for civil society organisations, educators, policymakers, product teams and the general public. By fostering a greater understanding of the real-world harms of AI and related technologies, we aim to increase understanding, empower NGOs and individuals to identify and report violations, inform policy discussions, and encourage responsible technology development and deployment.
Score Normalization for a Faster Diffusion Exponential Integrator Sampler
Xia, Guoxuan, Danier, Duolikun, Das, Ayan, Fotiadis, Stathi, Nabiei, Farhang, Sengupta, Ushnish, Bernacchia, Alberto
Recently, Zhang and Chen [25] have proposed the Diffusion Exponential Integrator Sampler (DEIS) for fast generation of samples from Diffusion Models. It leverages the semi-linear nature of the probability flow ordinary differential equation (ODE) in order to greatly reduce integration error and improve generation quality at low numbers of function evaluations (NFEs). Key to this approach is the score function reparameterisation, which reduces the integration error incurred from using a fixed score function estimate over each integration step. The original authors use the default parameterisation used by models trained for noise prediction - multiply the score by the standard deviation of the conditional forward noising distribution. We find that although the mean absolute value of this score parameterisation is close to constant for a large portion of the reverse sampling process, it changes rapidly at the end of sampling. As a simple fix, we propose to instead reparameterise the score (at inference) by dividing it by the average absolute value of previous score estimates at that time step collected from offline high NFE generations. We find that our score normalisation (DEIS-SN) consistently improves FID compared to vanilla DEIS, showing an improvement at 10 NFEs from 6.44 to 5.57 on CIFAR-10 and from 5.9 to 4.95 on LSUN-Church (64 64).
Generative Diffusion Models for Radio Wireless Channel Modelling and Sampling
Sengupta, Ushnish, Jao, Chinkuo, Bernacchia, Alberto, Vakili, Sattar, Shiu, Da-shan
Channel modelling is essential to designing modern wireless communication systems. The increasing complexity of channel modelling and the cost of collecting high-quality wireless channel data have become major challenges. In this paper, we propose a diffusion model based channel sampling approach for rapidly synthesizing channel realizations from limited data. We use a diffusion model with a U Net based architecture operating in the frequency space domain. To evaluate how well the proposed model reproduces the true distribution of channels in the training dataset, two evaluation metrics are used: $i)$ the approximate $2$-Wasserstein distance between real and generated distributions of the normalized power spectrum in the antenna and frequency domains and $ii)$ precision and recall metric for distributions. We show that, compared to existing GAN based approaches which suffer from mode collapse and unstable training, our diffusion based approach trains stably and generates diverse and high-fidelity samples from the true channel distribution. We also show that we can pretrain the model on a simulated urban macro-cellular channel dataset and fine-tune it on a smaller, out-of-distribution urban micro-cellular dataset, therefore showing that it is feasible to model real world channels using limited data with this approach.
Ensembling geophysical models with Bayesian Neural Networks
Sengupta, Ushnish, Amos, Matt, Hosking, J. Scott, Rasmussen, Carl Edward, Juniper, Matthew, Young, Paul J.
Ensembles of geophysical models improve prediction accuracy and express uncertainties. We develop a novel data-driven ensembling strategy for combining geophysical models using Bayesian Neural Networks, which infers spatiotemporally varying model weights and bias, while accounting for heteroscedastic uncertainties in the observations. This produces more accurate and uncertaintyaware predictions without sacrificing interpretability. Applied to the prediction of total column ozone from an ensemble of 15 chemistry-climate models, we find that the Bayesian neural network ensemble (BayNNE) outperforms existing methods for ensembling physical models, achieving a 49.4% reduction in RMSE for temporal extrapolation, and a 67.4% reduction in RMSE for polar data voids, compared to a weighted mean. Uncertainty is also well-characterized, with 91.9% of the data points in our extrapolation validation dataset lying within 2 standard deviations and 98.9% within 3 standard deviations.