Sen, Subhabrata
Contextual Stochastic Block Models
Deshpande, Yash, Sen, Subhabrata, Montanari, Andrea, Mossel, Elchanan
We provide the first information theoretical tight analysis for inference of latent community structure given a sparse graph along with high dimensional node covariates, correlated with the same latent communities. Our work bridges recent theoretical breakthroughs in detection of latent community structure without nodes covariates and a large body of empirical work using diverse heuristics for combining node covariates with graphs for inference. The tightness of our analysis implies in particular, the information theoretic necessity of combining the different sources of information. Our analysis holds for networks of large degrees as well as for a Gaussian version of the model.
Tracking Dynamic Sources of Malicious Activity at Internet Scale
Venkataraman, Shobha, Blum, Avrim, Song, Dawn, Sen, Subhabrata, Spatscheck, Oliver
We formulate and address the problem of discovering dynamic malicious regions on the Internet. We model this problem as one of adaptively pruning a known decision tree, but with additional challenges: (1) severe space requirements, since the underlying decision tree has over 4 billion leaves, and (2) a changing target function, since malicious activity on the Internet is dynamic. We present a novel algorithm that addresses this problem, by putting together a number of different ``experts algorithms and online paging algorithms. We prove guarantees on our algorithms performance as a function of the best possible pruning of a similar size, and our experiments show that our algorithm achieves high accuracy on large real-world data sets, with significant improvements over existing approaches.