Goto

Collaborating Authors

 Semini, Claudio


Reactive Landing Controller for Quadruped Robots

arXiv.org Artificial Intelligence

Quadruped robots are machines intended for challenging and harsh environments. Despite the progress in locomotion strategy, safely recovering from unexpected falls or planned drops is still an open problem. It is further made more difficult when high horizontal velocities are involved. In this work, we propose an optimization-based reactive Landing Controller that uses only proprioceptive measures for torque-controlled quadruped robots that free-fall on a flat horizontal ground, knowing neither the distance to the landing surface nor the flight time. Based on an estimate of the Center of Mass horizontal velocity, the method uses the Variable Height Springy Inverted Pendulum model for continuously recomputing the feet position while the robot is falling. In this way, the quadruped is ready to attain a successful landing in all directions, even in the presence of significant horizontal velocities. The method is demonstrated to dramatically enlarge the region of horizontal velocities that can be dealt with by a naive approach that keeps the feet still during the airborne stage. To the best of our knowledge, this is the first time that a quadruped robot can successfully recover from falls with horizontal velocities up to 3 m/s in simulation. Experiments prove that the used platform, Go1, can successfully attain a stable standing configuration from falls with various horizontal velocity and different angular perturbations.


Fast Convex Visual Foothold Adaptation for Quadrupedal Locomotion

arXiv.org Artificial Intelligence

This extended abstract provides a short introduction on our recently developed perception-based controller for quadrupedal locomotion. Compared to our previous approach based on Visual Foothold Adaptation (VFA) and Model Predictive Control (MPC), our new framework combines a fast approximation of the safe foothold regions based on Neural Network regression, followed by a convex decomposition routine in order to generate safe landing areas where the controller can freely optimize the footholds location. The aforementioned framework, which combines prediction, convex decomposition, and MPC solution, is tested in simulation on our 140kg hydraulic quadruped robot (HyQReal).


Locosim: an Open-Source Cross-Platform Robotics Framework

arXiv.org Artificial Intelligence

Writing software for robotic platforms can be arduous, time-consuming, and error-prone. In recent years, the number of research groups working in robotics has grown exponentially, each group having platforms with peculiar characteristics. The choice of morphology, actuation systems, and sensing technology is virtually unlimited, and code reuse is fundamental to getting new robots up and running in the shortest possible time. In addition, it is pervasive for researchers willing to test new ideas in simulation without wasting time in coding, for instance, using high-level languages for rapid code prototyping. To pursue these goals, in the past years several robotics frameworks have been designed for teaching or for controlling specific platforms, e.g., OpenRAVE [1], Drake [2] and SL [3].


Quadrupedal Footstep Planning using Learned Motion Models of a Black-Box Controller

arXiv.org Artificial Intelligence

Legged robots are increasingly entering new domains and applications, including search and rescue, inspection, and logistics. However, for such systems to be valuable in real-world scenarios, they must be able to autonomously and robustly navigate irregular terrains. In many cases, robots that are sold on the market do not provide such abilities, being able to perform only blind locomotion. Furthermore, their controller cannot be easily modified by the end-user, requiring a new and time-consuming control synthesis. In this work, we present a fast local motion planning pipeline that extends the capabilities of a black-box walking controller that is only able to track high-level reference velocities. More precisely, we learn a set of motion models for such a controller that maps high-level velocity commands to Center of Mass (CoM) and footstep motions. We then integrate these models with a variant of the A star algorithm to plan the CoM trajectory, footstep sequences, and corresponding high-level velocity commands based on visual information, allowing the quadruped to safely traverse irregular terrains at demand.


Kinematically-Decoupled Impedance Control for Fast Object Visual Servoing and Grasping on Quadruped Manipulators

arXiv.org Artificial Intelligence

We propose a control pipeline for SAG (Searching, Approaching, and Grasping) of objects, based on a decoupled arm kinematic chain and impedance control, which integrates image-based visual servoing (IBVS). The kinematic decoupling allows for fast end-effector motions and recovery that leads to robust visual servoing. The whole approach and pipeline can be generalized for any mobile platform (wheeled or tracked vehicles), but is most suitable for dynamically moving quadruped manipulators thanks to their reactivity against disturbances. The compliance of the impedance controller makes the robot safer for interactions with humans and the environment. We demonstrate the performance and robustness of the proposed approach with various experiments on our 140 kg HyQReal quadruped robot equipped with a 7-DoF manipulator arm. The experiments consider dynamic locomotion, tracking under external disturbances, and fast motions of the target object.


Computer-Vision Based Real Time Waypoint Generation for Autonomous Vineyard Navigation with Quadruped Robots

arXiv.org Artificial Intelligence

The VINUM project seeks to address the shortage of skilled labor in modern vineyards by introducing a cutting-edge mobile robotic solution. Leveraging the capabilities of the quadruped robot, HyQReal, this system, equipped with arm and vision sensors, offers autonomous navigation and winter pruning of grapevines reducing the need for human intervention. At the heart of this approach lies an architecture that empowers the robot to easily navigate vineyards, identify grapevines with unparalleled accuracy, and approach them for pruning with precision. A state machine drives the process, deftly switching between various stages to ensure seamless and efficient task completion. The system's performance was assessed through experimentation, focusing on waypoint precision and optimizing the robot's workspace for single-plant operations. Results indicate that the architecture is highly reliable, with a mean error of 21.5cm and a standard deviation of 17.6cm for HyQReal. However, improvements in grapevine detection accuracy are necessary for optimal performance. This work is based on a computer-vision-based navigation method for quadruped robots in vineyards, opening up new possibilities for selective task automation. The system's architecture works well in ideal weather conditions, generating and arriving at precise waypoints that maximize the attached robotic arm's workspace. This work is an extension of our short paper presented at the Italian Conference on Robotics and Intelligent Machines (I-RIM).


ContactNet: Online Multi-Contact Planning for Acyclic Legged Robot Locomotion

arXiv.org Artificial Intelligence

Abstract-- In legged locomotion, online trajectory optimization techniques generally depend on heuristic-based contact planners in order to have low computation times and achieve high replanning frequencies. In this work, we propose ContactNet, a fast acyclic contact planner based on a multioutput regression neural network. ContactNet ranks discretized stepping regions, allowing to quickly choose the best feasible solution, even in complex environments. The low computation time, in the order of 1 ms, makes possible the execution of the contact planner concurrently with a trajectory optimizer in a Model Predictive Control (MPC) fashion. Online motion planning for legged robots remains a challenging Further, automatically navigating terrain with constraints problem. The common approach is to use optimization such as stepping stones is generally not possible with such algorithms in a Model Predictive Control (MPC) approaches. When complex motions are desired, the user is loop to automatically generate trajectories based on sensor then usually forced to design a contact plan suitable for the feedback [1], [2], [3], [4].


Orientation Control System: Enhancing Aerial Maneuvers for Quadruped Robots

arXiv.org Artificial Intelligence

For legged robots, aerial motions are the only option to overpass obstacles that cannot be circumvent with standard locomotion gaits. In these cases, the robot must perform a leap to either jump onto the obstacle or fly over it. However, these movements represent a challenge because during the flight phase the Center of Mass (CoM) cannot be controlled, and the robot orientation has limited controllability. This paper focuses on the latter issue and proposes an Orientation Control System (OCS) consisting of two rotating and actuated masses (flywheels or reaction wheels) to gain control authority on the robot orientation. Because of the conservation of angular momentum, their rotational velocity can be adjusted to steer the robot orientation even when there are no contacts with the ground. The axes of rotation of the flywheels are designed to be incident, leading to a compact orientation control system that is capable of controlling both roll and pitch angles, considering the different moment of inertia in the two directions. We tested the concept with simulations on the robot Solo12.


Optimization-Based Reference Generator for Nonlinear Model Predictive Control of Legged Robots

arXiv.org Artificial Intelligence

Model Predictive Control (MPC) approaches are widely used in robotics, since they guarantee feasibility and allow the computation of updated trajectories while the robot is moving. They generally require heuristic references for the tracking terms and proper tuning of the parameters of the cost function in order to obtain good performance. For instance, when a legged robot has to react to disturbances from the environment (e.g., recover after a push) or track a specific goal with statically unstable gaits, the effectiveness of the algorithm can degrade. In this work, we propose a novel optimization-based Reference Generator which exploits a Linear Inverted Pendulum (LIP) model to compute reference trajectories for the Center of Mass while taking into account the possible under-actuation of a gait (e.g., in a trot). The obtained trajectories are used as references for the cost function of the Nonlinear MPC presented in our previous work. We also present a formulation that ensures guarantees on the response time to reach a goal without the need to tune the weights of the cost terms. In addition, footholds are corrected using the optimized reference to drive the robot towards the goal. We demonstrate the effectiveness of our approach both in simulations and experiments in different scenarios with the Aliengo robot.


Towards Computer-Vision Based Vineyard Navigation for Quadruped Robots

arXiv.org Artificial Intelligence

There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.