Sejnowski, Terrence J.
Optimizing Cortical Mappings
Goodhill, Geoffrey J., Finch, Steven, Sejnowski, Terrence J.
"Topographic" mappings occur frequently in the brain. A popular approach to understanding the structure of such mappings is to map points representing input features in a space of a few dimensions to points in a 2 dimensional space using some selforganizing algorithm. We argue that a more general approach may be useful, where similarities between features are not constrained to be geometric distances, and the objective function for topographic matching is chosen explicitly rather than being specified implicitly by the self-organizing algorithm. We investigate analytically an example of this more general approach applied to the structure of interdigitated mappings, such as the pattern of ocular dominance columns in primary visual cortex. 1 INTRODUCTION A prevalent feature of mappings in the brain is that they are often "topographic". In the most straightforward case this simply means that neighbouring points on a two-dimensional sheet (e.g. the retina) are mapped to neighbouring points in a more central two-dimensional structure (e.g. the optic tectum). However a more complex case, still often referred to as topographic, is the mapping from an abstract space of features (e.g.
A Model of Spatial Representations in Parietal Cortex Explains Hemineglect
Pouget, Alexandre, Sejnowski, Terrence J.
We have recently developed a theory of spatial representations in which the position of an object is not encoded in a particular frame of reference but, instead, involves neurons computing basis functions of their sensory inputs. This type of representation is able to perform nonlinear sensorimotor transformations and is consistent with the response properties of parietal neurons. We now ask whether the same theory could account for the behavior of human patients with parietal lesions. These lesions induce a deficit known as hemineglect that is characterized by a lack of reaction to stimuli located in the hemispace contralateral to the lesion. A simulated lesion in a basis function representation was found to replicate three of the most important aspects of hemineglect: i) The models failed to cross the leftmost lines in line cancellation experiments, ii) the deficit affected multiple frames of reference and, iii) it could be object centered. These results strongly support the basis function hypothesis for spatial representations and provide a computational theory of hemineglect at the single cell level. 1 Introduction According to current theories of spatial representations, the positions of objects are represented in multiple modules throughout the brain, each module being specialized for a particular sensorimotor transformation and using its own frame of reference. For instance, the lateral intraparietal area (LIP) appears to encode the location of objects in oculocentric coordinates, presumably for the control of saccadic eye movements.
Classifying Facial Action
Bartlett, Marian Stewart, Viola, Paul A., Sejnowski, Terrence J., Golomb, Beatrice A., Larsen, Jan, Hager, Joseph C., Ekman, Paul
The Facial Action Coding System, (FACS), devised by Ekman and Friesen (1978), provides an objective meanS for measuring the facial muscle contractions involved in a facial expression. In this paper, we approach automated facial expression analysis by detecting and classifying facial actions. We generated a database of over 1100 image sequences of 24 subjects performing over 150 distinct facial actions or action combinations. We compare three different approaches to classifying the facial actions in these images: Holistic spatial analysis based on principal components of graylevel images; explicit measurement of local image features such as wrinkles; and template matching with motion flow fields. On a dataset containing six individual actions and 20 subjects, these methods had 89%, 57%, and 85% performances respectively for generalization to novel subjects. When combined, performance improved to 92%.
Optimizing Cortical Mappings
Goodhill, Geoffrey J., Finch, Steven, Sejnowski, Terrence J.
"Topographic" mappings occur frequently in the brain. A popular approachto understanding the structure of such mappings is to map points representing input features in a space of a few dimensions to points in a 2 dimensional space using some selforganizing algorithm.We argue that a more general approach may be useful, where similarities between features are not constrained tobe geometric distances, and the objective function for topographic matching is chosen explicitly rather than being specified implicitlyby the self-organizing algorithm. We investigate analytically an example of this more general approach applied to the structure of interdigitated mappings, such as the pattern of ocular dominance columns in primary visual cortex. 1 INTRODUCTION A prevalent feature of mappings in the brain is that they are often "topographic". In the most straightforward case this simply means that neighbouring points on a two-dimensional sheet (e.g. the retina) are mapped to neighbouring points in a more central two-dimensional structure (e.g. the optic tectum). However a more complex case, still often referred to as topographic, is the mapping from an abstract space of features (e.g.
A Model of Spatial Representations in Parietal Cortex Explains Hemineglect
Pouget, Alexandre, Sejnowski, Terrence J.
We have recently developed a theory of spatial representations in which the position of an object is not encoded in a particular frame of reference but, instead, involves neurons computing basis functions oftheir sensory inputs. This type of representation is able to perform nonlinear sensorimotor transformations and is consistent withthe response properties of parietal neurons. We now ask whether the same theory could account for the behavior of human patients with parietal lesions. These lesions induce a deficit known as hemineglect that is characterized by a lack of reaction to stimuli located in the hemispace contralateral to the lesion. A simulated lesion in a basis function representation was found to replicate three of the most important aspects of hemineglect: i) The models failed to cross the leftmost lines in line cancellation experiments, ii) the deficit affected multiple frames of reference and, iii) it could be object centered. These results strongly support the basis function hypothesis for spatial representations and provide a computational theory of hemineglect at the single cell level. 1 Introduction According to current theories of spatial representations, the positions of objects are represented in multiple modules throughout the brain, each module being specialized fora particular sensorimotor transformation and using its own frame of reference. For instance, the lateral intraparietal area (LIP) appears to encode the location of objects in oculocentric coordinates, presumably for the control of saccadic eyemovements.
Independent Component Analysis of Electroencephalographic Data
Makeig, Scott, Bell, Anthony J., Jung, Tzyy-Ping, Sejnowski, Terrence J.
Because of the distance between the skull and brain and their different resistivities, electroencephalographic (EEG) data collected from any point on the human scalp includes activity generated within a large brain area. This spatial smearing of EEG data by volume conduction does not involve significant time delays, however, suggesting that the Independent Component Analysis (ICA) algorithm of Bell and Sejnowski [1] is suitable for performing blind source separation on EEG data.
Tempering Backpropagation Networks: Not All Weights are Created Equal
Schraudolph, Nicol N., Sejnowski, Terrence J.
Backpropagation learning algorithms typically collapse the network's structure into a single vector of weight parameters to be optimized. We suggest that their performance may be improved by utilizing the structural information instead of discarding it, and introduce a framework for ''tempering'' each weight accordingly. In the tempering model, activation and error signals are treated as approximately independent random variables. The characteristic scale of weight changes is then matched to that ofthe residuals, allowing structural properties such as a node's fan-in and fan-out to affect the local learning rate and backpropagated error. The model also permits calculation of an upper bound on the global learning rate for batch updates, which in turn leads to different update rules for bias vs. non-bias weights. This approach yields hitherto unparalleled performance on the family relations benchmark, a deep multi-layer network: for both batch learning with momentum and the delta-bar-delta algorithm, convergence at the optimal learning rate is sped up by more than an order of magnitude.
Empirical Entropy Manipulation for Real-World Problems
Viola, Paul A., Schraudolph, Nicol N., Sejnowski, Terrence J.
Independent Component Analysis of Electroencephalographic Data
Makeig, Scott, Bell, Anthony J., Jung, Tzyy-Ping, Sejnowski, Terrence J.
Recent efforts to identify EEG sources have focused mostly on verforming spatial segregation and localization of source activity [4]. By applying the leA algorithm of Bell and Sejnowski [1], we attempt to completely separate the twin problems of source identification (What) and source localization (Where). The leA algorithm derives independent sources from highly correlated EEG signals statistically and without regard to the physical location or configuration of the source generators. Rather than modeling the EEG as a unitary output of a multidimensional dynamical system,or as "the roar of the crowd" of independent microscopic generators, we suppose that the EEG is the output of a number of statistically independent but spatially fixed potential-generating systems which may either be spatially restricted or widely distributed.
Classifying Facial Action
Bartlett, Marian Stewart, Viola, Paul A., Sejnowski, Terrence J., Golomb, Beatrice A., Larsen, Jan, Hager, Joseph C., Ekman, Paul
Measurement of facial expressions is important for research and assessment psychiatry, neurology,and experimental psychology (Ekman, Huang, Sejnowski, & Hager, 1992), and has technological applications in consumer-friendly user interfaces, interactive videoand entertainment rating. The Facial Action Coding System (FACS) is a method for measuring facial expressions in terms of activity in the underlying facial muscles (Ekman & Friesen, 1978). We are exploring ways to automate FACS.