Sejnowski, Terrence J.
Cholinergic Modulation Preserves Spike Timing Under Physiologically Realistic Fluctuating Input
Tang, Akaysha C., Bartels, Andreas M., Sejnowski, Terrence J.
Recently, there has been a vigorous debate concerning the nature of neural coding (Rieke et al. 1996; Stevens and Zador 1995; Shadlen and Newsome 1994). The prevailing view has been that the mean firing rate conveys all information about the sensory stimulus in a spike train and the precise timing of the individual spikes is noise. This belief is, in part, based on a lack of correlation between the precise timing of the spikes and the sensory qualities of the stimulus under study, particularly, on a lack of spike timing repeatability when identical stimulation is delivered. This view has been challenged by a number of recent studies, in which highly repeatable temporal patterns of spikes can be observed both in vivo (Bair and Koch 1996; Abeles et al. 1993) and in vitro (Mainen and Sejnowski 1994). Furthermore, application of information theory to the coding problem in the frog and house fly (Bialek et al. 1991; Bialek and Rieke 1992) suggested that additional information could be extracted from spike timing. In the absence of direct evidence for a timing code in the cerebral cortex, the role of spike timing in neural coding remains controversial.
Selective Integration: A Model for Disparity Estimation
Gray, Michael S., Pouget, Alexandre, Zemel, Richard S., Nowlan, Steven J., Sejnowski, Terrence J.
Local disparity information is often sparse and noisy, which creates two conflicting demands when estimating disparity in an image region: the need to spatially average to get an accurate estimate, and the problem of not averaging over discontinuities. We have developed a network model of disparity estimation based on disparityselective neurons, such as those found in the early stages of processing in visual cortex. The model can accurately estimate multiple disparities in a region, which may be caused by transparency or occlusion, in real images and random-dot stereograms. The use of a selection mechanism to selectively integrate reliable local disparity estimates results in superior performance compared to standard back-propagation and cross-correlation approaches. In addition, the representations learned with this selection mechanism are consistent with recent neurophysiological results of von der Heydt, Zhou, Friedman, and Poggio [8] for cells in cortical visual area V2. Combining multi-scale biologically-plausible image processing with the power of the mixture-of-experts learning algorithm represents a promising approach that yields both high performance and new insights into visual system function.
Viewpoint Invariant Face Recognition using Independent Component Analysis and Attractor Networks
Bartlett, Marian Stewart, Sejnowski, Terrence J.
We have explored two approaches to recogmzmg faces across changes in pose. First, we developed a representation of face images based on independent component analysis (ICA) and compared it to a principal component analysis (PCA) representation for face recognition. The ICA basis vectors for this data set were more spatially local than the PCA basis vectors and the ICA representation had greater invariance to changes in pose. Second, we present a model for the development of viewpoint invariant responses to faces from visual experience in a biological system. The temporal continuity of natural visual experience was incorporated into an attractor network model by Hebbian learning following a lowpass temporal filter on unit activities.
Selective Integration: A Model for Disparity Estimation
Gray, Michael S., Pouget, Alexandre, Zemel, Richard S., Nowlan, Steven J., Sejnowski, Terrence J.
Local disparity information is often sparse and noisy, which creates two conflicting demands when estimating disparity in an image region: theneed to spatially average to get an accurate estimate, and the problem of not averaging over discontinuities. We have developed anetwork model of disparity estimation based on disparityselective neurons,such as those found in the early stages of processing in visual cortex. The model can accurately estimate multiple disparities in a region, which may be caused by transparency or occlusion, inreal images and random-dot stereograms. The use of a selection mechanism to selectively integrate reliable local disparity estimates results in superior performance compared to standard back-propagation and cross-correlation approaches. In addition, the representations learned with this selection mechanism are consistent withrecent neurophysiological results of von der Heydt, Zhou, Friedman, and Poggio [8] for cells in cortical visual area V2. Combining multi-scale biologically-plausible image processing with the power of the mixture-of-experts learning algorithm represents a promising approach that yields both high performance and new insights into visual system function.
Viewpoint Invariant Face Recognition using Independent Component Analysis and Attractor Networks
Bartlett, Marian Stewart, Sejnowski, Terrence J.
We have explored two approaches to recogmzmg faces across changes in pose. First, we developed a representation of face images based on independent component analysis (ICA) and compared it to a principal component analysis (PCA) representation for face recognition. The ICA basis vectors for this data set were more spatially local than the PCA basis vectors and the ICA representation hadgreater invariance to changes in pose. Second, we present a model for the development of viewpoint invariant responses to faces from visual experience in a biological system. The temporal continuity of natural visual experience was incorporated into an attractor network model by Hebbian learning following a lowpass temporal filter on unit activities.
Learning Decision Theoretic Utilities through Reinforcement Learning
Stensmo, Magnus, Sejnowski, Terrence J.
Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, wherethe cost of the test as well as the expected improvement in the outcome must be considered. Relatively little work has been done on learning the utilities of outcomes for optimal decision making. In this paper, we show how temporal-difference reinforcement learning (TO(Aยป can be used to determine decision theoretic utilities within the context of a mixture model and apply this new approach to a problem in medical diagnosis. TO(A) learning of utilities reduces the number of tests that have to be done to achieve the same level of performance compared with the probability model alone, which results in significant cost savings and increased efficiency.
Dynamic Features for Visual Speechreading: A Systematic Comparison
Gray, Michael S., Movellan, Javier R., Sejnowski, Terrence J.
Humans use visual as well as auditory speech signals to recognize spoken words. A variety of systems have been investigated for performing thistask. The main purpose of this research was to systematically comparethe performance of a range of dynamic visual features on a speechreading task. We have found that normalization ofimages to eliminate variation due to translation, scale, and planar rotation yielded substantial improvements in generalization performanceregardless of the visual representation used. In addition, the dynamic information in the difference between successive framesyielded better performance than optical-flow based approaches, and compression by local low-pass filtering worked surprisingly betterthan global principal components analysis (PCA). These results are examined and possible explanations are explored.
Empirical Entropy Manipulation for Real-World Problems
Viola, Paul A., Schraudolph, Nicol N., Sejnowski, Terrence J.
Tempering Backpropagation Networks: Not All Weights are Created Equal
Schraudolph, Nicol N., Sejnowski, Terrence J.
Backpropagation learning algorithms typically collapse the network's structure into a single vector of weight parameters to be optimized. We suggest that their performance may be improved by utilizing the structural information instead of discarding it, and introduce a framework for ''tempering'' each weight accordingly. In the tempering model, activation and error signals are treated as approximately independent random variables. The characteristic scale of weight changes is then matched to that ofthe residuals, allowing structural properties such as a node's fan-in and fan-out to affect the local learning rate and backpropagated error. The model also permits calculation of an upper bound on the global learning rate for batch updates, which in turn leads to different update rules for bias vs. non-bias weights. This approach yields hitherto unparalleled performance on the family relations benchmark, a deep multi-layer network: for both batch learning with momentum and the delta-bar-delta algorithm, convergence at the optimal learning rate is sped up by more than an order of magnitude.
A Model of Spatial Representations in Parietal Cortex Explains Hemineglect
Pouget, Alexandre, Sejnowski, Terrence J.
We have recently developed a theory of spatial representations in which the position of an object is not encoded in a particular frame of reference but, instead, involves neurons computing basis functions of their sensory inputs. This type of representation is able to perform nonlinear sensorimotor transformations and is consistent with the response properties of parietal neurons. We now ask whether the same theory could account for the behavior of human patients with parietal lesions. These lesions induce a deficit known as hemineglect that is characterized by a lack of reaction to stimuli located in the hemispace contralateral to the lesion. A simulated lesion in a basis function representation was found to replicate three of the most important aspects of hemineglect: i) The models failed to cross the leftmost lines in line cancellation experiments, ii) the deficit affected multiple frames of reference and, iii) it could be object centered. These results strongly support the basis function hypothesis for spatial representations and provide a computational theory of hemineglect at the single cell level. 1 Introduction According to current theories of spatial representations, the positions of objects are represented in multiple modules throughout the brain, each module being specialized for a particular sensorimotor transformation and using its own frame of reference. For instance, the lateral intraparietal area (LIP) appears to encode the location of objects in oculocentric coordinates, presumably for the control of saccadic eye movements.