Sejnowski, Terrence J.
Handling Missing Data with Variational Bayesian Learning of ICA
Chan, Kwokleung, Lee, Te-Won, Sejnowski, Terrence J.
Modeling the distributions of the independent sources with mixture of Gaussians allows sources to be estimated with different kurtosis and skewness. The variational Bayesian method automatically determines the dimensionality of the data and yields an accurate density model for the observed data without overfitting problems.
Color Opponency Constitutes a Sparse Representation for the Chromatic Structure of Natural Scenes
Lee, Te-Won, Wachtler, Thomas, Sejnowski, Terrence J.
The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This color opponency has been shown to constitute an efficient encoding by spectral decorrelation of the receptor signals. We analyze the spatial and chromatic structure of natural scenes by decomposing the spectral images into a set of linear basis functions such that they constitute a representation with minimal redundancy. Independent component analysis finds the basis functions that transforms the spatiochromatic data such that the outputs (activations) are statistically as independent as possible, i.e. least redundant. The resulting basis functions show strong opponency along an achromatic direction (luminance edges), along a blueyellow direction, and along a red-blue direction.
A Comparison of Image Processing Techniques for Visual Speech Recognition Applications
Gray, Michael S., Sejnowski, Terrence J., Movellan, Javier R.
These methods are compared on their performance on a visual speech recognition task. While the representations developed are specific to visual speech recognition, the methods themselves are general purpose and applicable to other tasks. Our focus is on low-level data-driven methods based on the statistical properties of relatively untouched images, as opposed to approaches that work with contours or highly processed versions of the image. Padgett [8] and Bartlett [1] systematically studied statistical methods for developing representations on expression recognition tasks. They found that local wavelet-like representations consistently outperformed global representations, like eigenfaces. In this paper we also compare local versus global representations.
Color Opponency Constitutes a Sparse Representation for the Chromatic Structure of Natural Scenes
Lee, Te-Won, Wachtler, Thomas, Sejnowski, Terrence J.
The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This color opponency has been shown to constitute an efficient encoding by spectral decorrelation of the receptor signals. We analyze the spatial and chromatic structure of natural scenes by decomposing the spectral images into a set of linear basis functions such that they constitute a representation with minimal redundancy. Independent component analysis finds the basis functions that transforms the spatiochromatic data such that the outputs (activations) are statistically as independent as possible, i.e. least redundant. The resulting basis functions show strong opponency along an achromatic direction (luminance edges), along a blueyellow direction, and along a red-blue direction.
A Comparison of Image Processing Techniques for Visual Speech Recognition Applications
Gray, Michael S., Sejnowski, Terrence J., Movellan, Javier R.
These methods are compared on their performance on a visual speech recognition task. While the representations developed are specific to visual speech recognition, the methods themselvesare general purpose and applicable to other tasks. Our focus is on low-level data-driven methods based on the statistical properties of relatively untouched images, as opposed to approaches that work with contours or highly processed versions of the image. Padgett [8] and Bartlett [1] systematically studied statistical methods for developing representations on expression recognition tasks. They found that local wavelet-like representations consistently outperformed global representations, like eigenfaces. In this paper we also compare local versus global representations.
Color Opponency Constitutes a Sparse Representation for the Chromatic Structure of Natural Scenes
Lee, Te-Won, Wachtler, Thomas, Sejnowski, Terrence J.
The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This color opponency has been shown to constitute an efficient encoding by spectral decorrelation of the receptor signals. We analyze the spatial and chromatic structure of natural scenes by decomposing the spectral images into a set of linear basis functions such that they constitute a representation with minimal redundancy. Independentcomponent analysis finds the basis functions that transforms the spatiochromatic data such that the outputs (activations) are statistically as independent as possible, i.e. least redundant. The resulting basis functions show strong opponency along an achromatic direction (luminance edges), along a blueyellow direction,and along a red-blue direction.
Predictive Sequence Learning in Recurrent Neocortical Circuits
Rao, Rajesh P. N., Sejnowski, Terrence J.
Image Representations for Facial Expression Coding
Bartlett, Marian Stewart, Donato, Gianluca, Movellan, Javier R., Hager, Joseph C., Ekman, Paul, Sejnowski, Terrence J.
The Facial Action Coding System (FACS) (9) is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These methods include unsupervised learning techniques for finding basis images such as principal component analysis, independent component analysis and local feature analysis, and supervised learning techniques such as Fisher's linear discriminants.
Image Representations for Facial Expression Coding
Bartlett, Marian Stewart, Donato, Gianluca, Movellan, Javier R., Hager, Joseph C., Ekman, Paul, Sejnowski, Terrence J.
The Facial Action Coding System (FACS) (9) is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding ispresently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facialactions in sequences of images. These methods include unsupervised learning techniques for finding basis images such as principal component analysis, independent component analysis and local feature analysis, and supervised learning techniques such as Fisher's linear discriminants.
Predictive Sequence Learning in Recurrent Neocortical Circuits
Rao, Rajesh P. N., Sejnowski, Terrence J.
The neocortex is characterized by an extensive system of recurrent excitatory connections between neurons in a given area. The precise computational function of this massive recurrent excitation remains unknown. Previous modeling studies have suggested a role for excitatory feedback in amplifying feedforward inputs [1]. Recently, however, it has been shown that recurrent excitatory connections between cortical neurons are modified according to a temporally asymmetric Hebbian learning rule: synapses that are activated slightly before the cell fires are strengthened whereas those that are activated slightly after are weakened [2, 3]. Information regarding the postsynaptic activity of the cell is conveyed back to the dendritic locations of synapses by back-propagating action potentials from the soma.