Not enough data to create a plot.
Try a different view from the menu above.
Sejnowski, Terrence J.
Foraging in an Uncertain Environment Using Predictive Hebbian Learning
Montague, P. Read, Dayan, Peter, Sejnowski, Terrence J.
Survival is enhanced by an ability to predict the availability of food, the likelihood of predators, and the presence of mates. We present a concrete model that uses diffuse neurotransmitter systems to implement a predictive version of a Hebb learning rule embedded in a neural architecture basedon anatomical and physiological studies on bees. The model captured the strategies seen in the behavior of bees and a number of other animals when foraging in an uncertain environment. The predictive model suggests a unified way in which neuromodulatory influences can be used to bias actions and control synaptic plasticity. Successful predictions enhance adaptive behavior by allowing organisms to prepare for future actions,rewards, or punishments. Moreover, it is possible to improve upon behavioral choices if the consequences of executing different actions can be reliably predicted. Although classicaland instrumental conditioning results from the psychological literature [1] demonstrate that the vertebrate brain is capable of reliable prediction, how these predictions are computed in brains is not yet known. The brains of vertebrates and invertebrates possess small nuclei which project axons throughout large expanses of target tissue and deliver various neurotransmitters such as dopamine, norepinephrine, and acetylcholine [4]. The activity in these systems may report on reinforcing stimuli in the world or may reflect an expectation of future reward [5, 6,7,8].
Processing of Visual and Auditory Space and Its Modification by Experience
Rauschecker, Josef P., Sejnowski, Terrence J.
Sejnowski Computational Neurobiology Lab The Salk: Institute San Diego, CA 92138 Visual spatial information is projected from the retina to the brain in a highly topographic fashion, so that 2-D visual space is represented in a simple retinotopic map. Auditory spatial information, by contrast, has to be computed from binaural time and intensity differences as well as from monaural spectral cues produced by the head and ears. Evaluation of these cues in the central nervous system leads to the generation of neurons that are sensitive to the location of a sound source in space ("spatial tuning") and, in some animal species, to auditory space maps where spatial location is encoded as a 2-D map just like in the visual system. The brain structures thought to be involved in the multimodal integration of visual and auditory spatial integration are the superior colliculus in the midbrain and the inferior parietal lobe in the cerebral cortex. It has been suggested for the owl that the visual system participates in setting up the auditory space map in the superior.
Temporal Difference Learning of Position Evaluation in the Game of Go
Schraudolph, Nicol N., Dayan, Peter, Sejnowski, Terrence J.
Processing of Visual and Auditory Space and Its Modification by Experience
Rauschecker, Josef P., Sejnowski, Terrence J.
Visual spatial information is projected from the retina to the brain in a highly topographic fashion, so that 2-D visual space is represented in a simple retinotopic map. Auditory spatial information, by contrast, has to be computed from binaural time and intensity differences as well as from monaural spectral cues produced by the head and ears. Evaluation of these cues in the central nervous system leads to the generation of neurons that are sensitive to the location of a sound source in space ("spatial tuning") and, in some animal species, to auditory space maps where spatial location is encoded as a 2-D map just like in the visual system. The brain structures thought to be involved in the multimodal integration of visual and auditory spatial integration are the superior colliculus in the midbrain and the inferior parietal lobe in the cerebral cortex. It has been suggested for the owl that the visual system participates in setting up the auditory space map in the superior.
Unsupervised Discrimination of Clustered Data via Optimization of Binary Information Gain
Schraudolph, Nicol N., Sejnowski, Terrence J.
We present the information-theoretic derivation of a learning algorithm that clusters unlabelled data with linear discriminants. In contrast to methods that try to preserve information about the input patterns, we maximize the information gained from observing the output of robust binary discriminators implemented with sigmoid nodes. We deri ve a local weight adaptation rule via gradient ascent in this objective, demonstrate its dynamics on some simple data sets, relate our approach to previous work and suggest directions in which it may be extended.
Filter Selection Model for Generating Visual Motion Signals
Nowlan, Steven J., Sejnowski, Terrence J.
We present a model of how MT cells aggregate responses from VI to form such a velocity representation. Two different sets of units, with local receptive fields, receive inputs from motion energy filters. One set of units forms estimates of local motion, while the second set computes the utility of these estimates. Outputs from this second set of units "gate" the outputs from the first set through a gain control mechanism. This active process for selecting only a subset of local motion responses to integrate into more global responses distinguishes our model from previous models of velocity estimation.
Biologically Plausible Local Learning Rules for the Adaptation of the Vestibulo-Ocular Reflex
Coenen, Olivier, Sejnowski, Terrence J., Lisberger, Stephen G.
Lisberger Department of Physiology W.M. Keck Foundation Center for Integrative Neuroscience University of California, San Fransisco, CA, 94143 Abstract The vestibulo-ocular reflex (VOR) is a compensatory eye movement that stabilizes images on the retina during head turns. Its magnitude, or gain, can be modified by visual experience during head movements. Possible learning mechanisms for this adaptation have been explored in a model of the oculomotor system based on anatomical and physiological constraints. Thelocal correlational learning rules in our model reproduce the adaptation and behavior of the VOR under certain parameter conditions. From these conditions, predictions for the time course of adaptation at the learning sites are made. 1 INTRODUCTION The primate oculomotor system is capable of maintaining the image of an object on the fovea even when the head and object are moving simultaneously.
Unsupervised Discrimination of Clustered Data via Optimization of Binary Information Gain
Schraudolph, Nicol N., Sejnowski, Terrence J.
We present the information-theoretic derivation of a learning algorithm that clusters unlabelled data with linear discriminants. In contrast to methods that try to preserve information about the input patterns, we maximize the information gained from observing the output of robust binary discriminators implemented with sigmoid nodes. We deri ve a local weight adaptation rule via gradient ascent in this objective, demonstrate its dynamics on some simple data sets, relate our approach to previous work and suggest directions in which it may be extended.
Filter Selection Model for Generating Visual Motion Signals
Nowlan, Steven J., Sejnowski, Terrence J.
We present a model of how MT cells aggregate responses from VI to form such a velocity representation. Two different sets of units, with local receptive fields, receive inputs from motion energy filters. One set of units forms estimates of local motion, while the second set computes the utility of these estimates. Outputs from this second set of units "gate" the outputs from the first set through a gain control mechanism. This active process for selecting only a subset of local motion responses to integrate into more global responses distinguishes our model from previous models of velocity estimation.
Unsupervised Discrimination of Clustered Data via Optimization of Binary Information Gain
Schraudolph, Nicol N., Sejnowski, Terrence J.
We present the information-theoretic derivation of a learning algorithm that clusters unlabelled data with linear discriminants. In contrast to methods that try to preserve information about the input patterns, we maximize the information gained from observing the output of robust binary discriminators implemented with sigmoid nodes. We deri ve a local weight adaptation rule via gradient ascent in this objective, demonstrate its dynamics on some simple data sets, relate our approach to previous work and suggest directions in which it may be extended.