Goto

Collaborating Authors

 Seeger, Matthias


Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning

arXiv.org Machine Learning

Bayesian optimization (BO) is a successful methodology to optimize black-box functions that are expensive to evaluate. While traditional methods optimize each black-box function in isolation, there has been recent interest in speeding up BO by transferring knowledge across multiple related black-box functions. In this work, we introduce a method to automatically design the BO search space by relying on evaluations of previous black-box functions. We depart from the common practice of defining a set of arbitrary search ranges a priori by considering search space geometries that are learned from historical data. This simple, yet effective strategy can be used to endow many existing BO methods with transfer learning properties. Despite its simplicity, we show that our approach considerably boosts BO by reducing the size of the search space, thus accelerating the optimization of a variety of black-box optimization problems. In particular, the proposed approach combined with random search results in a parameter-free, easy-to-implement, robust hyperparameter optimization strategy. We hope it will constitute a natural baseline for further research attempting to warm-start BO.


Multiple Adaptive Bayesian Linear Regression for Scalable Bayesian Optimization with Warm Start

arXiv.org Machine Learning

Bayesian optimization (BO) is a model-based approach for gradient-free black-box function optimization. Typically, BO is powered by a Gaussian process (GP), whose algorithmic complexity is cubic in the number of evaluations. Hence, GP-based BO cannot leverage large amounts of past or related function evaluations, for example, to warm start the BO procedure. We develop a multiple adaptive Bayesian linear regression model as a scalable alternative whose complexity is linear in the number of observations. The multiple Bayesian linear regression models are coupled through a shared feedforward neural network, which learns a joint representation and transfers knowledge across machine learning problems.


Auto-Differentiating Linear Algebra

arXiv.org Machine Learning

Development systems for deep learning, such as Theano, Torch, TensorFlow, or MXNet, are easy-to-use tools for creating complex neural network models. Since gradient computations are automatically baked in, and execution is mapped to high performance hardware, these models can be trained end-to-end on large amounts of data. However, it is currently not easy to implement many basic machine learning primitives in these systems (such as Gaussian processes, least squares estimation, principal components analysis, Kalman smoothing), mainly because they lack efficient support of linear algebra primitives as differentiable operators. We detail how a number of matrix decompositions (Cholesky, LQ, symmetric eigen) can be implemented as differentiable operators. We have implemented these primitives in MXNet, running on CPU and GPU in single and double precision. We sketch use cases of these new operators, learning Gaussian process and Bayesian linear regression models. Our implementation is based on BLAS/LAPACK APIs, for which highly tuned implementations are available on all major CPUs and GPUs.


Approximate Bayesian Inference in Linear State Space Models for Intermittent Demand Forecasting at Scale

arXiv.org Machine Learning

We present a scalable and robust Bayesian inference method for linear state space models. The method is applied to demand forecasting in the context of a large e-commerce platform, paying special attention to intermittent and bursty target statistics. Inference is approximated by the Newton-Raphson algorithm, reduced to linear-time Kalman smoothing, which allows us to operate on several orders of magnitude larger problems than previous related work. In a study on large real-world sales datasets, our method outperforms competing approaches on fast and medium moving items.


Fast Dual Variational Inference for Non-Conjugate LGMs

arXiv.org Machine Learning

Latent Gaussian models (LGMs) are widely used in statistics and machine learning. Bayesian inference in non-conjugate LGMs is difficult due to intractable integrals involving the Gaussian prior and non-conjugate likelihoods. Algorithms based on variational Gaussian (VG) approximations are widely employed since they strike a favorable balance between accuracy, generality, speed, and ease of use. However, the structure of the optimization problems associated with these approximations remains poorly understood, and standard solvers take too long to converge. We derive a novel dual variational inference approach that exploits the convexity property of the VG approximations. We obtain an algorithm that solves a convex optimization problem, reduces the number of variational parameters, and converges much faster than previous methods. Using real-world data, we demonstrate these advantages on a variety of LGMs, including Gaussian process classification, and latent Gaussian Markov random fields.


Large Scale Variational Bayesian Inference for Structured Scale Mixture Models

arXiv.org Machine Learning

Natural image statistics exhibit hierarchical dependencies across multiple scales. Representing such prior knowledge in non-factorial latent tree models can boost performance of image denoising, inpainting, deconvolution or reconstruction substantially, beyond standard factorial "sparse" methodology. We derive a large scale approximate Bayesian inference algorithm for linear models with non-factorial (latent tree-structured) scale mixture priors. Experimental results on a range of denoising and inpainting problems demonstrate substantially improved performance compared to MAP estimation or to inference with factorial priors.


Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

arXiv.org Machine Learning

We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.


Local Gaussian Process Regression for Real Time Online Model Learning

Neural Information Processing Systems

Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian Process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The prediction for a query point is performed by weighted estimation using nearby local models. Unlike other GP approximations, such as mixtures of experts, we use a distance based measure for partitioning of the data and weighted prediction. The proposed method achieves online learning and prediction in real-time. Comparisons with other nonparametric regression methods show that LGP has higher accuracy than LWPR and close to the performance of standard GPR and nu-SVR.


Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing

Neural Information Processing Systems

We show how to sequentially optimize magnetic resonance imaging measurement designs over stacks of neighbouring image slices, by performing convex variational inference on a large scale non-Gaussian linear dynamical system, tracking dominating directions of posterior covariance without imposing any factorization constraints. Our approach can be scaled up to high-resolution images by reductions to numerical mathematics primitives and parallelization on several levels. In a first study, designs are found that improve significantly on others chosen independently for each slice or drawn at random.


Bayesian Experimental Design of Magnetic Resonance Imaging Sequences

Neural Information Processing Systems

We show how improved sequences for magnetic resonance imaging can be found through automated optimization of Bayesian design scores. Combining recent advances in approximate Bayesian inference and natural image statistics with high-performance numerical computation, we propose the first scalable Bayesian experimental design framework for this problem of high relevance to clinical and brain research. Our solution requires approximate inference for dense, non-Gaussian models on a scale seldom addressed before. We propose a novel scalable variational inference algorithm, and show how powerful methods of numerical mathematics can be modified to compute primitives in our framework. Our approach is evaluated on a realistic setup with raw data from a 3T MR scanner.