Not enough data to create a plot.
Try a different view from the menu above.
Sebo, Sarah
Connection-Coordination Rapport (CCR) Scale: A Dual-Factor Scale to Measure Human-Robot Rapport
Lin, Ting-Han, Dinner, Hannah, Leung, Tsz Long, Mutlu, Bilge, Trafton, J. Gregory, Sebo, Sarah
Robots, particularly in service and companionship roles, must develop positive relationships with people they interact with regularly to be successful. These positive human-robot relationships can be characterized as establishing "rapport," which indicates mutual understanding and interpersonal connection that form the groundwork for successful long-term human-robot interaction. However, the human-robot interaction research literature lacks scale instruments to assess human-robot rapport in a variety of situations. In this work, we developed the 18-item Connection-Coordination Rapport (CCR) Scale to measure human-robot rapport. We first ran Study 1 (N = 288) where online participants rated videos of human-robot interactions using a set of candidate items. Our Study 1 results showed the discovery of two factors in our scale, which we named "Connection" and "Coordination." We then evaluated this scale by running Study 2 (N = 201) where online participants rated a new set of human-robot interaction videos with our scale and an existing rapport scale from virtual agents research for comparison. We also validated our scale by replicating a prior in-person human-robot interaction study, Study 3 (N = 44), and found that rapport is rated significantly greater when participants interacted with a responsive robot (responsive condition) as opposed to an unresponsive robot (unresponsive condition). Results from these studies demonstrate high reliability and validity for the CCR scale, which can be used to measure rapport in both first-person and third-person perspectives. We encourage the adoption of this scale in future studies to measure rapport in a variety of human-robot interactions.
Teaching Introductory HRI: UChicago Course "Human-Robot Interaction: Research and Practice"
Sebo, Sarah
In 2020, I designed the course CMSC 20630/30630 Human-Robot Interaction: Research and Practice as a hands-on introduction to human-robot interaction (HRI) research for both undergraduate and graduate students at the University of Chicago. Since 2020, I have taught and refined this course each academic year. Human-Robot Interaction: Research and Practice focuses on the core concepts and cutting-edge research in the field of human-robot interaction (HRI), covering topics that include: nonverbal robot behavior, verbal robot behavior, social dynamics, norms & ethics, collaboration & learning, group interactions, applications, and future challenges of HRI. Course meetings involve students in the class leading discussions about cutting-edge peer-reviewed research HRI publications. Students also participate in a quarter-long collaborative research project, where they pursue an HRI research question that often involves conducing their own human-subjects research study where they recruit human subjects to interact with a robot. In this paper, I detail the structure of the course and its learning goals as well as my reflections and student feedback on the course.