Goto

Collaborating Authors

 Schulz, Eric


Meta-in-context learning in large language models

arXiv.org Artificial Intelligence

Large language models have shown tremendous performance in a variety of tasks. In-context learning -- the ability to improve at a task after being provided with a number of demonstrations -- is seen as one of the main contributors to their success. In the present paper, we demonstrate that the in-context learning abilities of large language models can be recursively improved via in-context learning itself. We coin this phenomenon meta-in-context learning. Looking at two idealized domains, a one-dimensional regression task and a two-armed bandit task, we show that meta-in-context learning adaptively reshapes a large language model's priors over expected tasks. Furthermore, we find that meta-in-context learning modifies the in-context learning strategies of such models. Finally, we extend our approach to a benchmark of real-world regression problems where we observe competitive performance to traditional learning algorithms. Taken together, our work improves our understanding of in-context learning and paves the way toward adapting large language models to the environment they are applied purely through meta-in-context learning rather than traditional finetuning.


Inducing anxiety in large language models increases exploration and bias

arXiv.org Artificial Intelligence

Large language models are transforming research on machine learning while galvanizing public debates. Understanding not only when these models work well and succeed but also why they fail and misbehave is of great societal relevance. We propose to turn the lens of computational psychiatry, a framework used to computationally describe and modify aberrant behavior, to the outputs produced by these models. We focus on the Generative Pre-Trained Transformer 3.5 and subject it to tasks commonly studied in psychiatry. Our results show that GPT-3.5 responds robustly to a common anxiety questionnaire, producing higher anxiety scores than human subjects. Moreover, GPT-3.5's responses can be predictably changed by using emotion-inducing prompts. Emotion-induction not only influences GPT-3.5's behavior in a cognitive task measuring exploratory decision-making but also influences its behavior in a previously-established task measuring biases such as racism and ableism. Crucially, GPT-3.5 shows a strong increase in biases when prompted with anxiety-inducing text. Thus, it is likely that how prompts are communicated to large language models has a strong influence on their behavior in applied settings. These results progress our understanding of prompt engineering and demonstrate the usefulness of methods taken from computational psychiatry for studying the capable algorithms to which we increasingly delegate authority and autonomy.


Meta-Learned Models of Cognition

arXiv.org Artificial Intelligence

Meta-learning is a framework for learning learning algorithms through repeated interactions with an environment as opposed to designing them by hand. In recent years, this framework has established itself as a promising tool for building models of human cognition. Yet, a coherent research program around meta-learned models of cognition is still missing. The purpose of this article is to synthesize previous work in this field and establish such a research program. We rely on three key pillars to accomplish this goal. We first point out that meta-learning can be used to construct Bayes-optimal learning algorithms. This result not only implies that any behavioral phenomenon that can be explained by a Bayesian model can also be explained by a meta-learned model but also allows us to draw strong connections to the rational analysis of cognition. We then discuss several advantages of the meta-learning framework over traditional Bayesian methods. In particular, we argue that meta-learning can be applied to situations where Bayesian inference is impossible and that it enables us to make rational models of cognition more realistic, either by incorporating limited computational resources or neuroscientific knowledge. Finally, we reexamine prior studies from psychology and neuroscience that have applied meta-learning and put them into the context of these new insights. In summary, our work highlights that meta-learning considerably extends the scope of rational analysis and thereby of cognitive theories more generally.


Modeling Human Exploration Through Resource-Rational Reinforcement Learning

arXiv.org Artificial Intelligence

Equipping artificial agents with useful exploration mechanisms remains a challenge to this day. Humans, on the other hand, seem to manage the trade-off between exploration and exploitation effortlessly. In the present article, we put forward the hypothesis that they accomplish this by making optimal use of limited computational resources. We study this hypothesis by meta-learning reinforcement learning algorithms that sacrifice performance for a shorter description length (defined as the number of bits required to implement the given algorithm). The emerging class of models captures human exploration behavior better than previously considered approaches, such as Boltzmann exploration, upper confidence bound algorithms, and Thompson sampling. We additionally demonstrate that changing the description length in our class of models produces the intended effects: reducing description length captures the behavior of brain-lesioned patients while increasing it mirrors cognitive development during adolescence.


Using cognitive psychology to understand GPT-3

arXiv.org Artificial Intelligence

We study GPT-3, a recent large language model, using tools from cognitive psychology. More specifically, we assess GPT-3's decision-making, information search, deliberation, and causal reasoning abilities on a battery of canonical experiments from the literature. We find that much of GPT-3's behavior is impressive: it solves vignette-based tasks similarly or better than human subjects, is able to make decent decisions from descriptions, outperforms humans in a multi-armed bandit task, and shows signatures of model-based reinforcement learning. Yet we also find that small perturbations to vignette-based tasks can lead GPT-3 vastly astray, that it shows no signatures of directed exploration, and that it fails miserably in a causal reasoning task. These results enrich our understanding of current large language models and pave the way for future investigations using tools from cognitive psychology to study increasingly capable and opaque artificial agents.


Probing the Compositionality of Intuitive Functions

Neural Information Processing Systems

How do people learn about complex functional structure? Taking inspiration from other areas of cognitive science, we propose that this is accomplished by harnessing compositionality: complex structure is decomposed into simpler building blocks. We formalize this idea within the framework of Bayesian regression using a grammar over Gaussian process kernels. We show that participants prefer compositional over non-compositional function extrapolations, that samples from the human prior over functions are best described by a compositional model, and that people perceive compositional functions as more predictable than their non-compositional but otherwise similar counterparts. We argue that the compositional nature of intuitive functions is consistent with broad principles of human cognition.


Better safe than sorry: Risky function exploitation through safe optimization

arXiv.org Machine Learning

Exploration-exploitation of functions, that is learning and optimizing a mapping between inputs and expected outputs, is ubiquitous to many real world situations. These situations sometimes require us to avoid certain outcomes at all cost, for example because they are poisonous, harmful, or otherwise dangerous. We test participants' behavior in scenarios in which they have to find the optimum of a function while at the same time avoid outputs below a certain threshold. In two experiments, we find that Safe-Optimization, a Gaussian Process-based exploration-exploitation algorithm, describes participants' behavior well and that participants seem to care firstly whether a point is safe and then try to pick the optimal point from all such safe points. This means that their trade-off between exploration and exploitation can be seen as an intelligent, approximate, and homeostasis-driven strategy.