Plotting

 Schultz, Thomas


Global Context Is All You Need for Parallel Efficient Tractography Parcellation

arXiv.org Artificial Intelligence

Whole-brain tractography in diffusion MRI is often followed by a parcellation in which each streamline is classified as belonging to a specific white matter bundle, or discarded as a false positive. Efficient parcellation is important both in large-scale studies, which have to process huge amounts of data, and in the clinic, where computational resources are often limited. TractCloud is a state-of-the-art approach that aims to maximize accuracy with a local-global representation. We demonstrate that the local context does not contribute to the accuracy of that approach, and is even detrimental when dealing with pathological cases. Based on this observation, we propose PETParc, a new method for Parallel Efficient Tractography Parcellation. PETParc is a transformer-based architecture in which the whole-brain tractogram is randomly partitioned into sub-tractograms whose streamlines are classified in parallel, while serving as global context for each other. This leads to a speedup of up to two orders of magnitude relative to TractCloud, and permits inference even on clinical workstations without a GPU. PETParc accounts for the lack of streamline orientation either via a novel flip-invariant embedding, or by simply using flips as part of data augmentation. Despite the speedup, results are often even better than those of prior methods. The code and pretrained model will be made public upon acceptance.


Is Open-Source There Yet? A Comparative Study on Commercial and Open-Source LLMs in Their Ability to Label Chest X-Ray Reports

arXiv.org Artificial Intelligence

Introduction: With the rapid advances in large language models (LLMs), there have been numerous new open source as well as commercial models. While recent publications have explored GPT-4 in its application to extracting information of interest from radiology reports, there has not been a real-world comparison of GPT-4 to different leading open-source models. Materials and Methods: Two different and independent datasets were used. The first dataset consists of 540 chest x-ray reports that were created at the Massachusetts General Hospital between July 2019 and July 2021. The second dataset consists of 500 chest x-ray reports from the ImaGenome dataset. We then compared the commercial models GPT-3.5 Turbo and GPT-4 from OpenAI to the open-source models Mistral-7B, Mixtral-8x7B, Llama2-13B, Llama2-70B, QWEN1.5-72B and CheXbert and CheXpert-labeler in their ability to accurately label the presence of multiple findings in x-ray text reports using different prompting techniques. Results: On the ImaGenome dataset, the best performing open-source model was Llama2-70B with micro F1-scores of 0.972 and 0.970 for zero- and few-shot prompts, respectively. GPT-4 achieved micro F1-scores of 0.975 and 0.984, respectively. On the institutional dataset, the best performing open-source model was QWEN1.5-72B with micro F1-scores of 0.952 and 0.965 for zero- and few-shot prompting, respectively. GPT-4 achieved micro F1-scores of 0.975 and 0.973, respectively. Conclusion: In this paper, we show that while GPT-4 is superior to open-source models in zero-shot report labeling, the implementation of few-shot prompting can bring open-source models on par with GPT-4. This shows that open-source models could be a performant and privacy preserving alternative to GPT-4 for the task of radiology report classification.


Classification on Large Networks: A Quantitative Bound via Motifs and Graphons

arXiv.org Machine Learning

When each data point is a large graph, graph statistics such as densities of certain subgraphs (motifs) can be used as feature vectors for machine learning. While intuitive, motif counts are expensive to compute and difficult to work with theoretically. Via graphon theory, we give an explicit quantitative bound for the ability of motif homomorphisms to distinguish large networks under both generative and sampling noise. Furthermore, we give similar bounds for the graph spectrum and connect it to homomorphism densities of cycles. This results in an easily computable classifier on graph data with theoretical performance guarantee. Our method yields competitive results on classification tasks for the autoimmune disease Lupus Erythematosus.