Goto

Collaborating Authors

 Schindler, Konrad


TetraDiffusion: Tetrahedral Diffusion Models for 3D Shape Generation

arXiv.org Artificial Intelligence

Probabilistic denoising diffusion models (DDMs) have set a new standard for 2D image generation. Extending DDMs for 3D content creation is an active field of research. Here, we propose TetraDiffusion, a diffusion model that operates on a tetrahedral partitioning of 3D space to enable efficient, high-resolution 3D shape generation. Our model introduces operators for convolution and transpose convolution that act directly on the tetrahedral partition, and seamlessly includes additional attributes such as color. Remarkably, TetraDiffusion enables rapid sampling of detailed 3D objects in nearly real-time with unprecedented resolution. It's also adaptable for generating 3D shapes conditioned on 2D images. Compared to existing 3D mesh diffusion techniques, our method is up to 200 times faster in inference speed, works on standard consumer hardware, and delivers superior results.


Mixture of Experts with Uncertainty Voting for Imbalanced Deep Regression Problems

arXiv.org Artificial Intelligence

Data imbalance is ubiquitous when applying machine learning to real-world problems, particularly regression problems. If training data are imbalanced, the learning is dominated by the densely covered regions of the target distribution, consequently, the learned regressor tends to exhibit poor performance in sparsely covered regions. Beyond standard measures like over-sampling or re-weighting, there are two main directions to handle learning from imbalanced data. For regression, recent work relies on the continuity of the distribution; whereas for classification there has been a trend to employ mixture-of-expert models and let some ensemble members specialize in predictions for the sparser regions. In our method, dubbed MOUV, we propose to leverage recent work on probabilistic deep learning and integrate it in a mixture-of-experts approach for imbalanced regression. We replace traditional regression losses with negative log-likelihood which also predicts sample-wise aleatoric uncertainty. We show experimentally that such a loss handles the imbalance better. Secondly, we use the readily available aleatoric uncertainty values to fuse the predictions of a mixture-of-experts model, thus obviating the need for a separate aggregation module. We compare our method with existing alternatives on multiple public benchmarks and show that MOUV consistently outperforms the prior art, while at the same time producing better calibrated uncertainty estimates. Our code is available at link-upon-publication.


Nothing Stands Still: A Spatiotemporal Benchmark on 3D Point Cloud Registration Under Large Geometric and Temporal Change

arXiv.org Artificial Intelligence

Building 3D geometric maps of man-made spaces is a well-established and active field that is fundamental to computer vision and robotics. However, considering the evolving nature of built environments, it is essential to question the capabilities of current mapping efforts in handling temporal changes. In addition, spatiotemporal mapping holds significant potential for achieving sustainability and circularity goals. Existing mapping approaches focus on small changes, such as object relocation or self-driving car operation; in all cases where the main structure of the scene remains fixed. Consequently, these approaches fail to address more radical changes in the structure of the built environment, such as geometry and topology. To this end, we introduce the Nothing Stands Still (NSS) benchmark, which focuses on the spatiotemporal registration of 3D scenes undergoing large spatial and temporal change, ultimately creating one coherent spatiotemporal map. Specifically, the benchmark involves registering two or more partial 3D point clouds (fragments) from the same scene but captured from different spatiotemporal views. In addition to the standard pairwise registration, we assess the multi-way registration of multiple fragments that belong to any temporal stage. As part of NSS, we introduce a dataset of 3D point clouds recurrently captured in large-scale building indoor environments that are under construction or renovation. The NSS benchmark presents three scenarios of increasing difficulty, to quantify the generalization ability of point cloud registration methods over space (within one building and across buildings) and time. We conduct extensive evaluations of state-of-the-art methods on NSS. The results demonstrate the necessity for novel methods specifically designed to handle large spatiotemporal changes. The homepage of our benchmark is at http://nothing-stands-still.com.


Recognition of Unseen Bird Species by Learning from Field Guides

arXiv.org Artificial Intelligence

We exploit field guides to learn bird species recognition, in particular zero-shot recognition of unseen species. Illustrations contained in field guides deliberately focus on discriminative properties of each species, and can serve as side information to transfer knowledge from seen to unseen bird species. We study two approaches: (1) a contrastive encoding of illustrations, which can be fed into standard zero-shot learning schemes; and (2) a novel method that leverages the fact that illustrations are also images and as such structurally more similar to photographs than other kinds of side information. Our results show that illustrations from field guides, which are readily available for a wide range of species, are indeed a competitive source of side information for zero-shot learning. On a subset of the iNaturalist2021 dataset with 749 seen and 739 unseen species, we obtain a classification accuracy of unseen bird species of $12\%$ @top-1 and $38\%$ @top-10, which shows the potential of field guides for challenging real-world scenarios with many species. Our code is available at https://github.com/ac-rodriguez/zsl_billow


Cross-attention Spatio-temporal Context Transformer for Semantic Segmentation of Historical Maps

arXiv.org Artificial Intelligence

Historical maps provide useful spatio-temporal information on the Earth's surface before modern earth observation techniques came into being. To extract information from maps, neural networks, which gain wide popularity in recent years, have replaced hand-crafted map processing methods and tedious manual labor. However, aleatoric uncertainty, known as data-dependent uncertainty, inherent in the drawing/scanning/fading defects of the original map sheets and inadequate contexts when cropping maps into small tiles considering the memory limits of the training process, challenges the model to make correct predictions. As aleatoric uncertainty cannot be reduced even with more training data collected, we argue that complementary spatio-temporal contexts can be helpful. To achieve this, we propose a U-Net-based network that fuses spatio-temporal features with cross-attention transformers (U-SpaTem), aggregating information at a larger spatial range as well as through a temporal sequence of images. Our model achieves a better performance than other state-or-art models that use either temporal or spatial contexts. Compared with pure vision transformers, our model is more lightweight and effective. To the best of our knowledge, leveraging both spatial and temporal contexts have been rarely explored before in the segmentation task. Even though our application is on segmenting historical maps, we believe that the method can be transferred into other fields with similar problems like temporal sequences of satellite images. Our code is freely accessible at https://github.com/chenyizi086/wu.2023.sigspatial.git.


Context-aware multi-head self-attentional neural network model for next location prediction

arXiv.org Artificial Intelligence

Accurate activity location prediction is a crucial component of many mobility applications and is particularly required to develop personalized, sustainable transportation systems. Despite the widespread adoption of deep learning models, next location prediction models lack a comprehensive discussion and integration of mobility-related spatio-temporal contexts. Here, we utilize a multi-head self-attentional (MHSA) neural network that learns location transition patterns from historical location visits, their visit time and activity duration, as well as their surrounding land use functions, to infer an individual's next location. Specifically, we adopt point-of-interest data and latent Dirichlet allocation for representing locations' land use contexts at multiple spatial scales, generate embedding vectors of the spatio-temporal features, and learn to predict the next location with an MHSA network. Through experiments on two large-scale GNSS tracking datasets, we demonstrate that the proposed model outperforms other state-of-the-art prediction models, and reveal the contribution of various spatio-temporal contexts to the model's performance. Moreover, we find that the model trained on population data achieves higher prediction performance with fewer parameters than individual-level models due to learning from collective movement patterns. We also reveal mobility conducted in the recent past and one week before has the largest influence on the current prediction, showing that learning from a subset of the historical mobility is sufficient to obtain an accurate location prediction result. We believe that the proposed model is vital for context-aware mobility prediction. The gained insights will help to understand location prediction models and promote their implementation for mobility applications.


Fine-grained Species Recognition with Privileged Pooling: Better Sample Efficiency Through Supervised Attention

arXiv.org Artificial Intelligence

We propose a scheme for supervised image classification that uses privileged information, in the form of keypoint annotations for the training data, to learn strong models from small and/or biased training sets. Our main motivation is the recognition of animal species for ecological applications such as biodiversity modelling, which is challenging because of long-tailed species distributions due to rare species, and strong dataset biases such as repetitive scene background in camera traps. To counteract these challenges, we propose a visual attention mechanism that is supervised via keypoint annotations that highlight important object parts. This privileged information, implemented as a novel privileged pooling operation, is only required during training and helps the model to focus on regions that are discriminative. In experiments with three different animal species datasets, we show that deep networks with privileged pooling can use small training sets more efficiently and generalize better.


Satellite-based high-resolution maps of cocoa planted area for C\^ote d'Ivoire and Ghana

arXiv.org Artificial Intelligence

In both countries, cocoa is the primary perennial crop, providing income to almost two million farmers. Yet precise maps of cocoa planted area are missing, hindering accurate quantification of expansion in protected areas, production and yields, and limiting information available for improved sustainability governance. Here, we combine cocoa plantation data with publicly available satellite imagery in a deep learning framework and create high-resolution maps of cocoa plantations for both countries, validated in situ. Our results suggest that cocoa cultivation is an underlying driver of over 37 % and 13 % of forest loss in protected areas in Cรดte d'Ivoire and Ghana, respectively, and that official reports substantially underestimate the planted area, up to 40 % in Ghana. These maps serve as a crucial building block to advance understanding of conservation and economic development in cocoa producing regions.


Guided Depth Super-Resolution by Deep Anisotropic Diffusion

arXiv.org Artificial Intelligence

Performing super-resolution of a depth image using the guidance from an RGB image is a problem that concerns several fields, such as robotics, medical imaging, and remote sensing. While deep learning methods have achieved good results in this problem, recent work highlighted the value of combining modern methods with more formal frameworks. In this work, we propose a novel approach which combines guided anisotropic diffusion with a deep convolutional network and advances the state of the art for guided depth super-resolution. The edge transferring/enhancing properties of the diffusion are boosted by the contextual reasoning capabilities of modern networks, and a strict adjustment step guarantees perfect adherence to the source image. We achieve unprecedented results in three commonly used benchmarks for guided depth super-resolution. The performance gain compared to other methods is the largest at larger scales, such as x32 scaling. Code (https://github.com/prs-eth/Diffusion-Super-Resolution) for the proposed method is available to promote reproducibility of our results.


BiasBed -- Rigorous Texture Bias Evaluation

arXiv.org Artificial Intelligence

The well-documented presence of texture bias in modern convolutional neural networks has led to a plethora of algorithms that promote an emphasis on shape cues, often to support generalization to new domains. Yet, common datasets, benchmarks and general model selection strategies are missing, and there is no agreed, rigorous evaluation protocol. In this paper, we investigate difficulties and limitations when training networks with reduced texture bias. In particular, we also show that proper evaluation and meaningful comparisons between methods are not trivial. We introduce BiasBed, a testbed for texture- and style-biased training, including multiple datasets and a range of existing algorithms. It comes with an extensive evaluation protocol that includes rigorous hypothesis testing to gauge the significance of the results, despite the considerable training instability of some style bias methods. Our extensive experiments, shed new light on the need for careful, statistically founded evaluation protocols for style bias (and beyond). E.g., we find that some algorithms proposed in the literature do not significantly mitigate the impact of style bias at all. With the release of BiasBed, we hope to foster a common understanding of consistent and meaningful comparisons, and consequently faster progress towards learning methods free of texture bias. Code is available at https://github.com/D1noFuzi/BiasBed