Goto

Collaborating Authors

 Scherer, Sebastian


Autonomous drone cinematographer: Using artistic principles to create smooth, safe, occlusion-free trajectories for aerial filming

arXiv.org Artificial Intelligence

Autonomous aerial cinematography has the potential to enable automatic capture of aesthetically pleasing videos without requiring human intervention, empowering individuals with the capability of high-end film studios. Current approaches either only handle off-line trajectory generation, or offer strategies that reason over short time horizons and simplistic representations for obstacles, which result in jerky movement and low real-life applicability. In this work we develop a method for aerial filming that is able to trade off shot smoothness, occlusion, and cinematography guidelines in a principled manner, even under noisy actor predictions. We present a novel algorithm for real-time covariant gradient descent that we use to efficiently find the desired trajectories by optimizing a set of cost functions. Experimental results show that our approach creates attractive shots, avoiding obstacles and occlusion 65 times over 1.25 hours of flight time, re-planning at 5 Hz with a 10 s time horizon. We robustly film human actors, cars and bicycles performing different motion among obstacles, using various shot types.


Near-Optimal Edge Evaluation in Explicit Generalized Binomial Graphs

Neural Information Processing Systems

Robotic motion-planning problems, such as a UAV flying fast in a partially-known environment or a robot arm moving around cluttered objects, require finding collision-free paths quickly. Typically, this is solved by constructing a graph, where vertices represent robot configurations and edges represent potentially valid movements of the robot between theses configurations. The main computational bottlenecks are expensive edge evaluations to check for collisions. State of the art planning methods do not reason about the optimal sequence of edges to evaluate in order to find a collision free path quickly. In this paper, we do so by drawing a novel equivalence between motion planning and the Bayesian active learning paradigm of decision region determination (DRD). Unfortunately, a straight application of ex- isting methods requires computation exponential in the number of edges in a graph. We present BISECT, an efficient and near-optimal algorithm to solve the DRD problem when edges are independent Bernoulli random variables. By leveraging this property, we are able to significantly reduce computational complexity from exponential to linear in the number of edges. We show that BISECT outperforms several state of the art algorithms on a spectrum of planning problems for mobile robots, manipulators, and real flight data collected from a full scale helicopter. Open-source code and details can be found here: https://github.com/sanjibac/matlab_learning_collision_checking