Schapire, Robert E.
Corralling a Band of Bandit Algorithms
Agarwal, Alekh, Luo, Haipeng, Neyshabur, Behnam, Schapire, Robert E.
We study the problem of combining multiple bandit algorithms (that is, online learning algorithms with partial feedback) with the goal of creating a master algorithm that performs almost as well as the best base algorithm if it were to be run on its own. The main challenge is that when run with a master, base algorithms unavoidably receive much less feedback and it is thus critical that the master not starve a base algorithm that might perform uncompetitively initially but would eventually outperform others if given enough feedback. We address this difficulty by devising a version of Online Mirror Descent with a special mirror map together with a sophisticated learning rate scheme. We show that this approach manages to achieve a more delicate balance between exploiting and exploring base algorithms than previous works yielding superior regret bounds. Our results are applicable to many settings, such as multi-armed bandits, contextual bandits, and convex bandits. As examples, we present two main applications. The first is to create an algorithm that enjoys worst-case robustness while at the same time performing much better when the environment is relatively easy. The second is to create an algorithm that works simultaneously under different assumptions of the environment, such as different priors or different loss structures.
Unsupervised Domain Adaptation Using Approximate Label Matching
Ash, Jordan T., Schapire, Robert E., Engelhardt, Barbara E.
Domain adaptation addresses the problem created when training data is generated by a so-called source distribution, but test data is generated by a significantly different target distribution. In this work, we present approximate label matching (ALM), a new unsupervised domain adaptation technique that creates and leverages a rough labeling on the test samples, then uses these noisy labels to learn a transformation that aligns the source and target samples. We show that the transformation estimated by ALM has favorable properties compared to transformations estimated by other methods, which do not use any kind of target labeling. Our model is regularized by requiring that a classifier trained to discriminate source from transformed target samples cannot distinguish between the two. We experiment with ALM on simulated and real data, and show that it outperforms techniques commonly used in the field.
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits
Syrgkanis, Vasilis, Luo, Haipeng, Krishnamurthy, Akshay, Schapire, Robert E.
We propose a new oracle-based algorithm, BISTRO+, for the adversarial contextual bandit problem, where either contexts are drawn i.i.d. or the sequence of contexts is known a priori, but where the losses are picked adversarially. Our algorithm is computationally efficient, assuming access to an offline optimization oracle, and enjoys a regret of order $O((KT)^{\frac{2}{3}}(\log N)^{\frac{1}{3}})$, where $K$ is the number of actions, $T$ is the number of iterations, and $N$ is the number of baseline policies. Our result is the first to break the $O(T^{\frac{3}{4}})$ barrier achieved by recent algorithms, which was left as a major open problem. Our analysis employs the recent relaxation framework of (Rakhlin and Sridharan, ICML'16).
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Jiang, Nan, Krishnamurthy, Akshay, Agarwal, Alekh, Langford, John, Schapire, Robert E.
This paper studies systematic exploration for reinforcement learning with rich observations and function approximation. We introduce a new model called contextual decision processes, that unifies and generalizes most prior settings. Our first contribution is a complexity measure, the Bellman rank, that we show enables tractable learning of near-optimal behavior in these processes and is naturally small for many well-studied reinforcement learning settings. Our second contribution is a new reinforcement learning algorithm that engages in systematic exploration to learn contextual decision processes with low Bellman rank. Our algorithm provably learns near-optimal behavior with a number of samples that is polynomial in all relevant parameters but independent of the number of unique observations. The approach uses Bellman error minimization with optimistic exploration and provides new insights into efficient exploration for reinforcement learning with function approximation.
Exploratory Gradient Boosting for Reinforcement Learning in Complex Domains
Abel, David, Agarwal, Alekh, Diaz, Fernando, Krishnamurthy, Akshay, Schapire, Robert E.
High-dimensional observations and complex real-world dynamics present major challenges in reinforcement learning for both function approximation and exploration. We address both of these challenges with two complementary techniques: First, we develop a gradient-boosting style, non-parametric function approximator for learning on $Q$-function residuals. And second, we propose an exploration strategy inspired by the principles of state abstraction and information acquisition under uncertainty. We demonstrate the empirical effectiveness of these techniques, first, as a preliminary check, on two standard tasks (Blackjack and $n$-Chain), and then on two much larger and more realistic tasks with high-dimensional observation spaces. Specifically, we introduce two benchmarks built within the game Minecraft where the observations are pixel arrays of the agent's visual field. A combination of our two algorithmic techniques performs competitively on the standard reinforcement-learning tasks while consistently and substantially outperforming baselines on the two tasks with high-dimensional observation spaces. The new function approximator, exploration strategy, and evaluation benchmarks are each of independent interest in the pursuit of reinforcement-learning methods that scale to real-world domains.
Efficient and Parsimonious Agnostic Active Learning
Huang, Tzu-Kuo, Agarwal, Alekh, Hsu, Daniel J., Langford, John, Schapire, Robert E.
We develop a new active learning algorithm for the streaming setting satisfying three important properties: 1) It provably works for any classifier representation and classification problem including those with severe noise. 2) It is efficiently implementable with an ERM oracle. 3) It is more aggressive than all previous approaches satisfying 1 and 2. To do this we create an algorithm based on a newly defined optimization problem and analyze it. We also conduct the first experimental analysis of all efficient agnostic active learning algorithms, evaluating their strengths and weaknesses in different settings.
Efficient and Parsimonious Agnostic Active Learning
Huang, Tzu-Kuo, Agarwal, Alekh, Hsu, Daniel J., Langford, John, Schapire, Robert E.
We develop a new active learning algorithm for the streaming settingsatisfying three important properties: 1) It provably works for anyclassifier representation and classification problem including thosewith severe noise. 2) It is efficiently implementable with an ERMoracle. 3) It is more aggressive than all previous approachessatisfying 1 and 2. To do this, we create an algorithm based on a newlydefined optimization problem and analyze it. We also conduct the firstexperimental analysis of all efficient agnostic active learningalgorithms, evaluating their strengths and weaknesses in differentsettings.
Fast Convergence of Regularized Learning in Games
Syrgkanis, Vasilis, Agarwal, Alekh, Luo, Haipeng, Schapire, Robert E.
We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at $O(T^{-3/4})$, while the sum of utilities converges to an approximate optimum at $O(T^{-1})$--an improvement upon the worst case $O(T^{-1/2})$ rates. We show a black-box reduction for any algorithm in the class to achieve $\tilde{O}(T^{-1/2})$ rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of Rakhlin and Shridharan~\cite{Rakhlin2013} and Daskalakis et al.~\cite{Daskalakis2014}, who only analyzed two-player zero-sum games for specific algorithms.
Fast Convergence of Regularized Learning in Games
Syrgkanis, Vasilis, Agarwal, Alekh, Luo, Haipeng, Schapire, Robert E.
We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at $O(T^{-3/4})$, while the sum of utilities converges to an approximate optimum at $O(T^{-1})$--an improvement upon the worst case $O(T^{-1/2})$ rates. We show a black-box reduction for any algorithm in the class to achieve $\tilde{O}(T^{-1/2})$ rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of [Rakhlin and Shridharan 2013] and [Daskalakis et al. 2014], who only analyzed two-player zero-sum games for specific algorithms.
A Drifting-Games Analysis for Online Learning and Applications to Boosting
Luo, Haipeng, Schapire, Robert E.
We provide a general mechanism to design online learning algorithms based on a minimax analysis within a drifting-games framework. Different online learning settings (Hedge, multi-armed bandit problems and online convex optimization) are studied by converting into various kinds of drifting games. The original minimax analysis for drifting games is then used and generalized by applying a series of relaxations, starting from choosing a convex surrogate of the 0-1 loss function. With different choices of surrogates, we not only recover existing algorithms, but also propose new algorithms that are totally parameter-free and enjoy other useful properties. Moreover, our drifting-games framework naturally allows us to study high probability bounds without resorting to any concentration results, and also a generalized notion of regret that measures how good the algorithm is compared to all but the top small fraction of candidates. Finally, we translate our new Hedge algorithm into a new adaptive boosting algorithm that is computationally faster as shown in experiments, since it ignores a large number of examples on each round.