Not enough data to create a plot.
Try a different view from the menu above.
Schaffernicht, Erik
On the Fly Adaptation of Behavior Tree-Based Policies through Reinforcement Learning
Iannotta, Marco, Stork, Johannes A., Schaffernicht, Erik, Stoyanov, Todor
With the rising demand for flexible manufacturing, robots are increasingly expected to operate in dynamic environments where local disturbances--such as slight offsets or size differences in workpieces--are common. We propose to address the problem of adapting robot behaviors to these task variations with a sample-efficient hierarchical reinforcement learning approach adapting Behavior Tree (BT)-based policies. We maintain the core BT properties as an interpretable, modular framework for structuring reactive behaviors, but extend their use beyond static tasks by inherently accommodating local task variations. To show the efficiency and effectiveness of our approach, we conduct experiments both in simulation and on a Franka Emika Panda 7-DoF, with the manipulator adapting to different obstacle avoidance and pivoting tasks.
Learning Solutions of Stochastic Optimization Problems with Bayesian Neural Networks
Lahoud, Alan A., Schaffernicht, Erik, Stork, Johannes A.
Mathematical solvers use parametrized Optimization Problems (OPs) as inputs to yield optimal decisions. In many real-world settings, some of these parameters are unknown or uncertain. Recent research focuses on predicting the value of these unknown parameters using available contextual features, aiming to decrease decision regret by adopting end-to-end learning approaches. However, these approaches disregard prediction uncertainty and therefore make the mathematical solver susceptible to provide erroneous decisions in case of low-confidence predictions. We propose a novel framework that models prediction uncertainty with Bayesian Neural Networks (BNNs) and propagates this uncertainty into the mathematical solver with a Stochastic Programming technique. The differentiable nature of BNNs and differentiable mathematical solvers allow for two different learning approaches: In the Decoupled learning approach, we update the BNN weights to increase the quality of the predictions' distribution of the OP parameters, while in the Combined learning approach, we update the weights aiming to directly minimize the expected OP's cost function in a stochastic end-to-end fashion. We do an extensive evaluation using synthetic data with various noise properties and a real dataset, showing that decisions regret are generally lower (better) with both proposed methods.
DataSP: A Differential All-to-All Shortest Path Algorithm for Learning Costs and Predicting Paths with Context
Lahoud, Alan A., Schaffernicht, Erik, Stork, Johannes A.
Learning latent costs of transitions on graphs from trajectories demonstrations under various contextual features is challenging but useful for path planning. Yet, existing methods either oversimplify cost assumptions or scale poorly with the number of observed trajectories. This paper introduces DataSP, a differentiable all-to-all shortest path algorithm to facilitate learning latent costs from trajectories. It allows to learn from a large number of trajectories in each learning step without additional computation. Complex latent cost functions from contextual features can be represented in the algorithm through a neural network approximation. We further propose a method to sample paths from DataSP in order to reconstruct/mimic observed paths' distributions. We prove that the inferred distribution follows the maximum entropy principle. We show that DataSP outperforms state-of-the-art differentiable combinatorial solver and classical machine learning approaches in predicting paths on graphs.
Towards Interpretable Reinforcement Learning with Constrained Normalizing Flow Policies
Rietz, Finn, Schaffernicht, Erik, Heinrich, Stefan, Stork, Johannes A.
Reinforcement learning policies are typically represented by black-box neural networks, which are non-interpretable and not well-suited for safety-critical domains. To address both of these issues, we propose constrained normalizing flow policies as interpretable and safe-by-construction policy models. We achieve safety for reinforcement learning problems with instantaneous safety constraints, for which we can exploit domain knowledge by analytically constructing a normalizing flow that ensures constraint satisfaction. The normalizing flow corresponds to an interpretable sequence of transformations on action samples, each ensuring alignment with respect to a particular constraint. Our experiments reveal benefits beyond interpretability in an easier learning objective and maintained constraint satisfaction throughout the entire learning process. Our approach leverages constraints over reward engineering while offering enhanced interpretability, safety, and direct means of providing domain knowledge to the agent without relying on complex reward functions.
LaCE-LHMP: Airflow Modelling-Inspired Long-Term Human Motion Prediction By Enhancing Laminar Characteristics in Human Flow
Zhu, Yufei, Fan, Han, Rudenko, Andrey, Magnusson, Martin, Schaffernicht, Erik, Lilienthal, Achim J.
Long-term human motion prediction (LHMP) is essential for safely operating autonomous robots and vehicles in populated environments. It is fundamental for various applications, including motion planning, tracking, human-robot interaction and safety monitoring. However, accurate prediction of human trajectories is challenging due to complex factors, including, for example, social norms and environmental conditions. The influence of such factors can be captured through Maps of Dynamics (MoDs), which encode spatial motion patterns learned from (possibly scattered and partial) past observations of motion in the environment and which can be used for data-efficient, interpretable motion prediction (MoD-LHMP). To address the limitations of prior work, especially regarding accuracy and sensitivity to anomalies in long-term prediction, we propose the Laminar Component Enhanced LHMP approach (LaCE-LHMP). Our approach is inspired by data-driven airflow modelling, which estimates laminar and turbulent flow components and uses predominantly the laminar components to make flow predictions. Based on the hypothesis that human trajectory patterns also manifest laminar flow (that represents predictable motion) and turbulent flow components (that reflect more unpredictable and arbitrary motion), LaCE-LHMP extracts the laminar patterns in human dynamics and uses them for human motion prediction. We demonstrate the superior prediction performance of LaCE-LHMP through benchmark comparisons with state-of-the-art LHMP methods, offering an unconventional perspective and a more intuitive understanding of human movement patterns.
Prioritized Soft Q-Decomposition for Lexicographic Reinforcement Learning
Rietz, Finn, Heinrich, Stefan, Schaffernicht, Erik, Stork, Johannes Andreas
Reinforcement learning (RL) for complex tasks remains a challenge, primarily due to the difficulties of engineering scalar reward functions and the inherent inefficiency of training models from scratch. Instead, it would be better to specify complex tasks in terms of elementary subtasks and to reuse subtask solutions whenever possible. In this work, we address continuous space lexicographic multi-objective RL problems, consisting of prioritized subtasks, which are notoriously difficult to solve. We show that these can be scalarized with a subtask transformation and then solved incrementally using value decomposition. Exploiting this insight, we propose prioritized soft Q-decomposition (PSQD), a novel algorithm for learning and adapting subtask solutions under lexicographic priorities in continuous state-action spaces. PSQD offers the ability to reuse previously learned subtask solutions in a zero-shot composition, followed by an adaptation step. Its ability to use retained subtask training data for offline learning eliminates the need for new environment interaction during adaptation. We demonstrate the efficacy of our approach by presenting successful learning, reuse, and adaptation results for both low- and high-dimensional simulated robot control tasks, as well as offline learning results. In contrast to baseline approaches, PSQD does not trade off between conflicting subtasks or priority constraints and satisfies subtask priorities during learning. PSQD provides an intuitive framework for tackling complex RL problems, offering insights into the inner workings of the subtask composition.
A Stack-of-Tasks Approach Combined with Behavior Trees: a New Framework for Robot Control
Domínguez, David Cáceres, Iannotta, Marco, Stork, Johannes A., Schaffernicht, Erik, Stoyanov, Todor
Stack-of-Tasks (SoT) control allows a robot to simultaneously fulfill a number of prioritized goals formulated in terms of (in)equality constraints in error space. Since this approach solves a sequence of Quadratic Programs (QP) at each time-step, without taking into account any temporal state evolution, it is suitable for dealing with local disturbances. However, its limitation lies in the handling of situations that require non-quadratic objectives to achieve a specific goal, as well as situations where countering the control disturbance would require a locally suboptimal action. Recent works address this shortcoming by exploiting Finite State Machines (FSMs) to compose the tasks in such a way that the robot does not get stuck in local minima. Nevertheless, the intrinsic trade-off between reactivity and modularity that characterizes FSMs makes them impractical for defining reactive behaviors in dynamic environments. In this letter, we combine the SoT control strategy with Behavior Trees (BTs), a task switching structure that addresses some of the limitations of the FSMs in terms of reactivity, modularity and re-usability. Experimental results on a Franka Emika Panda 7-DOF manipulator show the robustness of our framework, that allows the robot to benefit from the reactivity of both SoT and BTs.
Data-driven Conceptual Spaces: Creating Semantic Representations For Linguistic Descriptions Of Numerical Data
Banaee, Hadi, Schaffernicht, Erik, Loutfi, Amy
There is an increasing need to derive semantics from real-world observations to facilitate natural information sharing between machine and human. Conceptual spaces theory is a possible approach and has been proposed as mid-level representation between symbolic and sub-symbolic representations, whereby concepts are represented in a geometrical space that is characterised by a number of quality dimensions. Currently, much of the work has demonstrated how conceptual spaces are created in a knowledge-driven manner, relying on prior knowledge to form concepts and identify quality dimensions. This paper presents a method to create semantic representations using data-driven conceptual spaces which are then used to derive linguistic descriptions of numerical data. Our contribution is a principled approach to automatically construct a conceptual space from a set of known observations wherein the quality dimensions and domains are not known a priori. This novelty of the approach is the ability to select and group semantic features to discriminate between concepts in a data-driven manner while preserving the semantic interpretation that is needed to infer linguistic descriptions for interaction with humans. Two data sets representing leaf images and time series signals are used to evaluate the method. An empirical evaluation for each case study assesses how well linguistic descriptions generated from the conceptual spaces identify unknown observations. Furthermore, comparisons are made with descriptions derived on alternative approaches for generating semantic models.