Scardapane, Simone
Learning Speech Emotion Representations in the Quaternion Domain
Guizzo, Eric, Weyde, Tillman, Scardapane, Simone, Comminiello, Danilo
The modeling of human emotion expression in speech signals is an important, yet challenging task. The high resource demand of speech emotion recognition models, combined with the the general scarcity of emotion-labelled data are obstacles to the development and application of effective solutions in this field. In this paper, we present an approach to jointly circumvent these difficulties. Our method, named RH-emo, is a novel semi-supervised architecture aimed at extracting quaternion embeddings from real-valued monoaural spectrograms, enabling the use of quaternion-valued networks for speech emotion recognition tasks. RH-emo is a hybrid real/quaternion autoencoder network that consists of a real-valued encoder in parallel to a real-valued emotion classifier and a quaternion-valued decoder. On the one hand, the classifier permits to optimize each latent axis of the embeddings for the classification of a specific emotion-related characteristic: valence, arousal, dominance and overall emotion. On the other hand, the quaternion reconstruction enables the latent dimension to develop intra-channel correlations that are required for an effective representation as a quaternion entity. We test our approach on speech emotion recognition tasks using four popular datasets: Iemocap, Ravdess, EmoDb and Tess, comparing the performance of three well-established real-valued CNN architectures (AlexNet, ResNet-50, VGG) and their quaternion-valued equivalent fed with the embeddings created with RH-emo. We obtain a consistent improvement in the test accuracy for all datasets, while drastically reducing the resources' demand of models. Moreover, we performed additional experiments and ablation studies that confirm the effectiveness of our approach. The RH-emo repository is available at: https://github.com/ispamm/rhemo.
Drop Edges and Adapt: a Fairness Enforcing Fine-tuning for Graph Neural Networks
Spinelli, Indro, Bianchini, Riccardo, Scardapane, Simone
The rise of graph representation learning as the primary solution for many different network science tasks led to a surge of interest in the fairness of this family of methods. Link prediction, in particular, has a substantial social impact. However, link prediction algorithms tend to increase the segregation in social networks by disfavoring the links between individuals in specific demographic groups. This paper proposes a novel way to enforce fairness on graph neural networks with a fine-tuning strategy. We Drop the unfair Edges and, simultaneously, we Adapt the model's parameters to those modifications, DEA in short. We introduce two covariance-based constraints designed explicitly for the link prediction task. We use these constraints to guide the optimization process responsible for learning the new "fair" adjacency matrix. One novelty of DEA is that we can use a discrete yet learnable adjacency matrix in our fine-tuning. We demonstrate the effectiveness of our approach on five real-world datasets and show that we can improve both the accuracy and the fairness of the link prediction tasks. In addition, we present an in-depth ablation study demonstrating that our training algorithm for the adjacency matrix can be used to improve link prediction performances during training. Finally, we compute the relevance of each component of our framework to show that the combination of both the constraints and the training of the adjacency matrix leads to optimal performances.
Explainability in subgraphs-enhanced Graph Neural Networks
Guerra, Michele, Spinelli, Indro, Scardapane, Simone, Bianchi, Filippo Maria
Recently, subgraphs-enhanced Graph Neural Networks (SGNNs) have been introduced to enhance the expressive power of Graph Neural Networks (GNNs), which was proved to be not higher than the 1-dimensional Weisfeiler-Leman isomorphism test. The new paradigm suggests using subgraphs extracted from the input graph to improve the model's expressiveness, but the additional complexity exacerbates an already challenging problem in GNNs: explaining their predictions. In this work, we adapt PGExplainer, one of the most recent explainers for GNNs, to SGNNs. The proposed explainer accounts for the contribution of all the different subgraphs and can produce a meaningful explanation that humans can interpret. The experiments that we performed both on real and synthetic datasets show that our framework is successful in explaining the decision process of an SGNN on graph classification tasks.
A New Class of Efficient Adaptive Filters for Online Nonlinear Modeling
Comminiello, Danilo, Nezamdoust, Alireza, Scardapane, Simone, Scarpiniti, Michele, Hussain, Amir, Uncini, Aurelio
Nonlinear models are known to provide excellent performance in real-world applications that often operate in non-ideal conditions. However, such applications often require online processing to be performed with limited computational resources. To address this problem, we propose a new class of efficient nonlinear models for online applications. The proposed algorithms are based on linear-in-the-parameters (LIP) nonlinear filters using functional link expansions. In order to make this class of functional link adaptive filters (FLAFs) efficient, we propose low-complexity expansions and frequency-domain adaptation of the parameters. Among this family of algorithms, we also define the partitioned-block frequency-domain FLAF, whose implementation is particularly suitable for online nonlinear modeling problems. We assess and compare frequency-domain FLAFs with different expansions providing the best possible tradeoff between performance and computational complexity. Experimental results prove that the proposed algorithms can be considered as an efficient and effective solution for online applications, such as the acoustic echo cancellation, even in the presence of adverse nonlinear conditions and with limited availability of computational resources.
Continual Learning with Invertible Generative Models
Pomponi, Jary, Scardapane, Simone, Uncini, Aurelio
Catastrophic forgetting (CF) happens whenever a neural network overwrites past knowledge while being trained on new tasks. Common techniques to handle CF include regularization of the weights (using, e.g., their importance on past tasks), and rehearsal strategies, where the network is constantly re-trained on past data. Generative models have also been applied for the latter, in order to have endless sources of data. In this paper, we propose a novel method that combines the strengths of regularization and generative-based rehearsal approaches. Our generative model consists of a normalizing flow (NF), a probabilistic and invertible neural network, trained on the internal embeddings of the network. By keeping a single NF throughout the training process, we show that our memory overhead remains constant. In addition, exploiting the invertibility of the NF, we propose a simple approach to regularize the network's embeddings with respect to past tasks. We show that our method performs favorably with espect to state-of-the-art approaches in the literature, with bounded computational power and memory overheads.
Pixle: a fast and effective black-box attack based on rearranging pixels
Pomponi, Jary, Scardapane, Simone, Uncini, Aurelio
Recent research has found that neural networks are vulnerable to several types of adversarial attacks, where the input samples are modified in such a way that the model produces a wrong prediction that misclassifies the adversarial sample. In this paper we focus on black-box adversarial attacks, that can be performed without knowing the inner structure of the attacked model, nor the training procedure, and we propose a novel attack that is capable of correctly attacking a high percentage of samples by rearranging a small number of pixels within the attacked image. We demonstrate that our attack works on a large number of datasets and models, that it requires a small number of iterations, and that the distance between the original sample and the adversarial one is negligible to the human eye.
A Meta-Learning Approach for Training Explainable Graph Neural Networks
Spinelli, Indro, Scardapane, Simone, Uncini, Aurelio
In this paper, we investigate the degree of explainability of graph neural networks (GNNs). Existing explainers work by finding global/local subgraphs to explain a prediction, but they are applied after a GNN has already been trained. Here, we propose a meta-learning framework for improving the level of explainability of a GNN directly at training time, by steering the optimization procedure towards what we call `interpretable minima'. Our framework (called MATE, MetA-Train to Explain) jointly trains a model to solve the original task, e.g., node classification, and to provide easily processable outputs for downstream algorithms that explain the model's decisions in a human-friendly way. In particular, we meta-train the model's parameters to quickly minimize the error of an instance-level GNNExplainer trained on-the-fly on randomly sampled nodes. The final internal representation relies upon a set of features that can be `better' understood by an explanation algorithm, e.g., another instance of GNNExplainer. Our model-agnostic approach can improve the explanations produced for different GNN architectures and use any instance-based explainer to drive this process. Experiments on synthetic and real-world datasets for node and graph classification show that we can produce models that are consistently easier to explain by different algorithms. Furthermore, this increase in explainability comes at no cost for the accuracy of the model.
Structured Ensembles: an Approach to Reduce the Memory Footprint of Ensemble Methods
Pomponi, Jary, Scardapane, Simone, Uncini, Aurelio
In this paper, we propose a novel ensembling technique for deep neural networks, which is able to drastically reduce the required memory compared to alternative approaches. In particular, we propose to extract multiple sub-networks from a single, untrained neural network by solving an end-to-end optimization task combining differentiable scaling over the original architecture, with multiple regularization terms favouring the diversity of the ensemble. Since our proposal aims to detect and extract sub-structures, we call it Structured Ensemble. On a large experimental evaluation, we show that our method can achieve higher or comparable accuracy to competing methods while requiring significantly less storage. In addition, we evaluate our ensembles in terms of predictive calibration and uncertainty, showing they compare favourably with the state-of-the-art. Finally, we draw a link with the continual learning literature, and we propose a modification of our framework to handle continuous streams of tasks with a sub-linear memory cost. We compare with a number of alternative strategies to mitigate catastrophic forgetting, highlighting advantages in terms of average accuracy and memory.
Biased Edge Dropout for Enhancing Fairness in Graph Representation Learning
Spinelli, Indro, Scardapane, Simone, Hussain, Amir, Uncini, Aurelio
Graph representation learning has become a ubiquitous component in many scenarios, ranging from social network analysis to energy forecasting in smart grids. In several applications, ensuring the fairness of the node (or graph) representations with respect to some protected attributes is crucial for their correct deployment. Yet, fairness in graph deep learning remains under-explored, with few solutions available. In particular, the tendency of similar nodes to cluster on several real-world graphs (i.e., homophily) can dramatically worsen the fairness of these procedures. In this paper, we propose a biased edge dropout algorithm (FairDrop) to counter-act homophily and improve fairness in graph representation learning. FairDrop can be plugged in easily on many existing algorithms, is efficient, adaptable, and can be combined with other fairness-inducing solutions. After describing the general algorithm, we demonstrate its application on two benchmark tasks, specifically, as a random walk model for producing node embeddings, and to a graph convolutional network for link prediction. We prove that the proposed algorithm can successfully improve the fairness of all models up to a small or negligible drop in accuracy, and compares favourably with existing state-of-the-art solutions. In an ablation study, we demonstrate that our algorithm can flexibly interpolate between biasing towards fairness and an unbiased edge dropout. Furthermore, to better evaluate the gains, we propose a new dyadic group definition to measure the bias of a link prediction task when paired with group-based fairness metrics. In particular, we extend the metric used to measure the bias in the node embeddings to take into account the graph structure.
Avalanche: an End-to-End Library for Continual Learning
Lomonaco, Vincenzo, Pellegrini, Lorenzo, Cossu, Andrea, Carta, Antonio, Graffieti, Gabriele, Hayes, Tyler L., De Lange, Matthias, Masana, Marc, Pomponi, Jary, van de Ven, Gido, Mundt, Martin, She, Qi, Cooper, Keiland, Forest, Jeremy, Belouadah, Eden, Calderara, Simone, Parisi, German I., Cuzzolin, Fabio, Tolias, Andreas, Scardapane, Simone, Antiga, Luca, Amhad, Subutai, Popescu, Adrian, Kanan, Christopher, van de Weijer, Joost, Tuytelaars, Tinne, Bacciu, Davide, Maltoni, Davide
Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation Figure 1: Operational representation of Avalanche with its of continual learning algorithms.