Saxe, Andrew
An Analytical Theory of Curriculum Learning in Teacher-Student Networks
Saglietti, Luca, Mannelli, Stefano Sarao, Saxe, Andrew
In humans and animals, curriculum learning -- presenting data in a curated order - is critical to rapid learning and effective pedagogy. Yet in machine learning, curricula are not widely used and empirically often yield only moderate benefits. This stark difference in the importance of curriculum raises a fundamental theoretical question: when and why does curriculum learning help? In this work, we analyse a prototypical neural network model of curriculum learning in the high-dimensional limit, employing statistical physics methods. Curricula could in principle change both the learning speed and asymptotic performance of a model. To study the former, we provide an exact description of the online learning setting, confirming the long-standing experimental observation that curricula can modestly speed up learning. To study the latter, we derive performance in a batch learning setting, in which a network trains to convergence in successive phases of learning on dataset slices of varying difficulty. With standard training losses, curriculum does not provide generalisation benefit, in line with empirical observations. However, we show that by connecting different learning phases through simple Gaussian priors, curriculum can yield a large improvement in test performance. Taken together, our reduced analytical descriptions help reconcile apparently conflicting empirical results and trace regimes where curriculum learning yields the largest gains. More broadly, our results suggest that fully exploiting a curriculum may require explicit changes to the loss function at curriculum boundaries.
Tensor Switching Networks
Tsai, Chuan-Yung, Saxe, Andrew, Cox, David
We present a novel neural network algorithm, the Tensor Switching (TS) network, which generalizes the Rectified Linear Unit (ReLU) nonlinearity to tensor-valued hidden units. The TS network copies its entire input vector to different locations in an expanded representation, with the location determined by its hidden unit activity. In this way, even a simple linear readout from the TS representation can implement a highly expressive deep-network-like function. The TS network hence avoids the vanishing gradient problem by construction, at the cost of larger representation size. We develop several methods to train the TS network, including equivalent kernels for infinitely wide and deep TS networks, a one-pass linear learning algorithm, and two backpropagation-inspired representation learning algorithms. Our experimental results demonstrate that the TS network is indeed more expressive and consistently learns faster than standard ReLU networks.
Unsupervised learning models of primary cortical receptive fields and receptive field plasticity
Bhand, Maneesh, Mudur, Ritvik, Suresh, Bipin, Saxe, Andrew, Ng, Andrew Y.
The efficient coding hypothesis holds that neural receptive fields are adapted to the statistics of the environment, but is agnostic to the timescale of this adaptation, which occurs on both evolutionary and developmental timescales. In this work we focus on that component of adaptation which occurs during an organism's lifetime, and show that a number of unsupervised feature learning algorithms can account for features of normal receptive field properties across multiple primary sensory cortices. Furthermore, we show that the same algorithms account for altered receptive field properties in response to experimentally altered environmental statistics. Based on these modeling results we propose these models as phenomenological models of receptive field plasticity during an organism's lifetime. Finally, due to the success of the same models in multiple sensory areas, we suggest that these algorithms may provide a constructive realization of the theory, first proposed by Mountcastle (1978), that a qualitatively similar learning algorithm acts throughout primary sensory cortices.
Measuring Invariances in Deep Networks
Goodfellow, Ian, Lee, Honglak, Le, Quoc V., Saxe, Andrew, Ng, Andrew Y.
For many pattern recognition tasks, the ideal input feature would be invariant to multiple confounding properties (such as illumination and viewing angle, in computer visionapplications). Recently, deep architectures trained in an unsupervised manner have been proposed as an automatic method for extracting useful features. However, it is difficult to evaluate the learned features by any means other than using them in a classifier. In this paper, we propose a number of empirical tests that directly measure the degree to which these learned features are invariant to different input transformations. We find that stacked autoencoders learn modestly increasingly invariant features with depth when trained on natural images. We find that convolutional deep belief networks learn substantially more invariant features in each layer. These results further justify the use of "deep" vs. "shallower" representations, butsuggest that mechanisms beyond merely stacking one autoencoder on top of another may be important for achieving invariance. Our evaluation metrics canalso be used to evaluate future work in deep learning, and thus help the development of future algorithms.