Sarkar, Soumik
Learning and Visualizing Localized Geometric Features Using 3D-CNN: An Application to Manufacturability Analysis of Drilled Holes
Ghadai, Sambit, Balu, Aditya, Krishnamurthy, Adarsh, Sarkar, Soumik
3D Convolutional Neural Networks (3D-CNN) have been used for object recognition based on the voxelized shape of an object. However, interpreting the decision making process of these 3D-CNNs is still an infeasible task. In this paper, we present a unique 3D-CNN based Gradient-weighted Class Activation Mapping method (3D-GradCAM) for visual explanations of the distinct local geometric features of interest within an object. To enable efficient learning of 3D geometries, we augment the voxel data with surface normals of the object boundary. We then train a 3D-CNN with this augmented data and identify the local features critical for decision-making using 3D GradCAM. An application of this feature identification framework is to recognize difficult-to-manufacture drilled hole features in a complex CAD geometry. The framework can be extended to identify difficult-to-manufacture features at multiple spatial scales leading to a real-time design for manufacturability decision support system.
Collaborative Deep Learning in Fixed Topology Networks
Jiang, Zhanhong, Balu, Aditya, Hegde, Chinmay, Sarkar, Soumik
There is significant recent interest to parallelize deep learning algorithms in order to handle the enormous growth in data and model sizes. While most advances focus on model parallelization and engaging multiple computing agents via using a central parameter server, aspect of data parallelization along with decentralized computation has not been explored sufficiently. In this context, this paper presents a new consensus-based distributed SGD (CDSGD) (and its momentum variant, CDMSGD) algorithm for collaborative deep learning over fixed topology networks that enables data parallelization as well as decentralized computation. Such a framework can be extremely useful for learning agents with access to only local/private data in a communication constrained environment. We analyze the convergence properties of the proposed algorithm with strongly convex and nonconvex objective functions with fixed and diminishing step sizes using concepts of Lyapunov function construction. We demonstrate the efficacy of our algorithms in comparison with the baseline centralized SGD and the recently proposed federated averaging algorithm (that also enables data parallelism) based on benchmark datasets such as MNIST, CIFAR-10 and CIFAR-100.
A Forward-Backward Approach for Visualizing Information Flow in Deep Networks
Balu, Aditya, Nguyen, Thanh V., Kokate, Apurva, Hegde, Chinmay, Sarkar, Soumik
We introduce a new, systematic framework for visualizing information flow in deep networks. Specifically, given any trained deep convolutional network model and a given test image, our method produces a compact support in the image domain that corresponds to a (high-resolution) feature that contributes to the given explanation. Our method is both computationally efficient as well as numerically robust. We present several preliminary numerical results that support the benefits of our framework over existing methods.
Interpretable Deep Learning applied to Plant Stress Phenotyping
Ghosal, Sambuddha, Blystone, David, Singh, Asheesh K., Ganapathysubramanian, Baskar, Singh, Arti, Sarkar, Soumik
Availability of an explainable deep learning model that can be applied to practical real world scenarios and in turn, can consistently, rapidly and accurately identify specific and minute traits in applicable fields of biological sciences, is scarce. Here we consider one such real world example viz., accurate identification, classification and quantification of biotic and abiotic stresses in crop research and production. Up until now, this has been predominantly done manually by visual inspection and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intra-rater cognitive variability. Here, we demonstrate the ability of a machine learning framework to identify and classify a diverse set of foliar stresses in the soybean plant with remarkable accuracy. We also present an explanation mechanism using gradient-weighted class activation mapping that isolates the visual symptoms used by the model to make predictions. This unsupervised identification of unique visual symptoms for each stress provides a quantitative measure of stress severity, allowing for identification, classification and quantification in one framework. The learnt model appears to be agnostic to species and make good predictions for other (non-soybean) species, demonstrating an ability of transfer learning.
Collaborative Deep Learning in Fixed Topology Networks
Jiang, Zhanhong, Balu, Aditya, Hegde, Chinmay, Sarkar, Soumik
There is significant recent interest to parallelize deep learning algorithms in order to handle the enormous growth in data and model sizes. While most advances focus on model parallelization and engaging multiple computing agents via using a central parameter server, aspect of data parallelization along with decentralized computation has not been explored sufficiently. In this context, this paper presents a new consensus-based distributed SGD (CDSGD) (and its momentum variant, CDMSGD) algorithm for collaborative deep learning over fixed topology networks that enables data parallelization as well as decentralized computation. Such a framework can be extremely useful for learning agents with access to only local/private data in a communication constrained environment. We analyze the convergence properties of the proposed algorithm with strongly convex and nonconvex objective functions with fixed and diminishing step sizes using concepts of Lyapunov function construction. We demonstrate the efficacy of our algorithms in comparison with the baseline centralized SGD and the recently proposed federated averaging algorithm (that also enables data parallelism) based on benchmark datasets such as MNIST, CIFAR-10 and CIFAR-100.
Learning Localized Geometric Features Using 3D-CNN: An Application to Manufacturability Analysis of Drilled Holes
Balu, Aditya, Ghadai, Sambit, Lore, Kin Gwn, Young, Gavin, Krishnamurthy, Adarsh, Sarkar, Soumik
3D convolutional neural networks (3D-CNN) have been used for object recognition based on the voxelized shape of an object. In this paper, we present a 3D-CNN based method to learn distinct local geometric features of interest within an object. In this context, the voxelized representation may not be sufficient to capture the distinguishing information about such local features. To enable efficient learning, we augment the voxel data with surface normals of the object boundary. We then train a 3D-CNN with this augmented data and identify the local features critical for decision-making using 3D gradient-weighted class activation maps. An application of this feature identification framework is to recognize difficult-to-manufacture drilled hole features in a complex CAD geometry. The framework can be extended to identify difficult-to-manufacture features at multiple spatial scales leading to a real-time decision support system for design for manufacturability.
Hierarchical Symbolic Dynamic Filtering of Streaming Non-stationary Time Series Data
Akintayo, Adedotun, Sarkar, Soumik
This paper proposes a hierarchical feature extractor for non-stationary streaming time series based on the concept of switching observable Markov chain models. The slow time-scale non-stationary behaviors are considered to be a mixture of quasi-stationary fast time-scale segments that are exhibited by complex dynamical systems. The idea is to model each unique stationary characteristic without a priori knowledge (e.g., number of possible unique characteristics) at a lower logical level, and capture the transitions from one low-level model to another at a higher level. In this context, the concepts in the recently developed Symbolic Dynamic Filtering (SDF) is extended, to build an online algorithm suited for handling quasi-stationary data at a lower level and a non-stationary behavior at a higher level without a priori knowledge. A key observation made in this study is that the rate of change of data likelihood seems to be a better indicator of change in data characteristics compared to the traditional methods that mostly consider data likelihood for change detection. The algorithm minimizes model complexity and captures data likelihood. Efficacy demonstration and comparative evaluation of the proposed algorithm are performed using time series data simulated from systems that exhibit nonlinear dynamics. We discuss results that show that the proposed hierarchical SDF algorithm can identify underlying features with significantly high degree of accuracy, even under very noisy conditions. Algorithm is demonstrated to perform better than the baseline Hierarchical Dirichlet Process-Hidden Markov Models (HDP-HMM). The low computational complexity of algorithm makes it suitable for on-board, real time operations.
Energy Prediction using Spatiotemporal Pattern Networks
Jiang, Zhanhong, Liu, Chao, Akintayo, Adedotun, Henze, Gregor, Sarkar, Soumik
This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamic filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. For quantifying the causal dependency, a mutual information based metric is presented. An energy prediction approach is subsequently proposed based on the STPN framework. For validating the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated by the National Renewable Energy Laboratory (NREL) for identifying the spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring the temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.
A Bayesian Network approach to County-Level Corn Yield Prediction using historical data and expert knowledge
Chawla, Vikas, Naik, Hsiang Sing, Akintayo, Adedotun, Hayes, Dermot, Schnable, Patrick, Ganapathysubramanian, Baskar, Sarkar, Soumik
Crop yield forecasting is the methodology of predicting crop yields prior to harvest. The availability of accurate yield prediction frameworks have enormous implications from multiple standpoints, including impact on the crop commodity futures markets, formulation of agricultural policy, as well as crop insurance rating. The focus of this work is to construct a corn yield predictor at the county scale. Corn yield (forecasting) depends on a complex, interconnected set of variables that include economic, agricultural, management and meteorological factors. Conventional forecasting is either knowledge-based computer programs (that simulate plant-weather-soil-management interactions) coupled with targeted surveys or statistical model based. The former is limited by the need for painstaking calibration, while the latter is limited to univariate analysis or similar simplifying assumptions that fail to capture the complex interdependencies affecting yield. In this paper, we propose a data-driven approach that is "gray box" i.e. that seamlessly utilizes expert knowledge in constructing a statistical network model for corn yield forecasting. Our multivariate gray box model is developed on Bayesian network analysis to build a Directed Acyclic Graph (DAG) between predictors and yield. Starting from a complete graph connecting various carefully chosen variables and yield, expert knowledge is used to prune or strengthen edges connecting variables. Subsequently the structure (connectivity and edge weights) of the DAG that maximizes the likelihood of observing the training data is identified via optimization. We curated an extensive set of historical data (1948-2012) for each of the 99 counties in Iowa as data to train the model.