Not enough data to create a plot.
Try a different view from the menu above.
Sarkar, Soumik
FlowBench: A Large Scale Benchmark for Flow Simulation over Complex Geometries
Tali, Ronak, Rabeh, Ali, Yang, Cheng-Hau, Shadkhah, Mehdi, Karki, Samundra, Upadhyaya, Abhisek, Dhakshinamoorthy, Suriya, Saadati, Marjan, Sarkar, Soumik, Krishnamurthy, Adarsh, Hegde, Chinmay, Balu, Aditya, Ganapathysubramanian, Baskar
Simulating fluid flow around arbitrary shapes is key to solving various engineering problems. However, simulating flow physics across complex geometries remains numerically challenging and computationally resource-intensive, particularly when using conventional PDE solvers. Machine learning methods offer attractive opportunities to create fast and adaptable PDE solvers. However, benchmark datasets to measure the performance of such methods are scarce, especially for flow physics across complex geometries. We introduce FlowBench, a dataset for neural simulators with over 10K samples, which is currently larger than any publicly available flow physics dataset. FlowBench contains flow simulation data across complex geometries (\textit{parametric vs. non-parametric}), spanning a range of flow conditions (\textit{Reynolds number and Grashoff number}), capturing a diverse array of flow phenomena (\textit{steady vs. transient; forced vs. free convection}), and for both 2D and 3D. FlowBench contains over 10K data samples, with each sample the outcome of a fully resolved, direct numerical simulation using a well-validated simulator framework designed for modeling transport phenomena in complex geometries. For each sample, we include velocity, pressure, and temperature field data at 3 different resolutions and several summary statistics features of engineering relevance (such as coefficients of lift and drag, and Nusselt numbers). %Additionally, we include masks and signed distance fields for each shape. We envision that FlowBench will enable evaluating the interplay between complex geometry, coupled flow phenomena, and data sufficiency on the performance of current, and future, neural PDE solvers. We enumerate several evaluation metrics to help rank order the performance of neural PDE solvers. We benchmark the performance of several baseline methods including FNO, CNO, WNO, and DeepONet.
DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models
Saadati, Nastaran, Pham, Minh, Saleem, Nasla, Waite, Joshua R., Balu, Aditya, Jiang, Zhanhong, Hegde, Chinmay, Sarkar, Soumik
Recent advances in decentralized deep learning algorithms have demonstrated cutting-edge performance on various tasks with large pre-trained models. However, a pivotal prerequisite for achieving this level of competitiveness is the significant communication and computation overheads when updating these models, which prohibits the applications of them to real-world scenarios. To address this issue, drawing inspiration from advanced model merging techniques without requiring additional training, we introduce the Decentralized Iterative Merging-And-Training (DIMAT) paradigm--a novel decentralized deep learning framework. Within DIMAT, each agent is trained on their local data and periodically merged with their neighboring agents using advanced model merging techniques like activation matching until convergence is achieved. DIMAT provably converges with the best available rate for nonconvex functions with various first-order methods, while yielding tighter error bounds compared to the popular existing approaches. We conduct a comprehensive empirical analysis to validate DIMAT's superiority over baselines across diverse computer vision tasks sourced from multiple datasets. Empirical results validate our theoretical claims by showing that DIMAT attains faster and higher initial gain in accuracy with independent and identically distributed (IID) and non-IID data, incurring lower communication overhead. This DIMAT paradigm presents a new opportunity for the future decentralized learning, enhancing its adaptability to real-world with sparse and light-weight communication and computation.
GENESIS-RL: GEnerating Natural Edge-cases with Systematic Integration of Safety considerations and Reinforcement Learning
Yang, Hsin-Jung, Beck, Joe, Hasan, Md Zahid, Beyazit, Ekin, Chakraborty, Subhadeep, Wongpiromsarn, Tichakorn, Sarkar, Soumik
In the rapidly evolving field of autonomous systems, the safety and reliability of the system components are fundamental requirements. These components are often vulnerable to complex and unforeseen environments, making natural edge-case generation essential for enhancing system resilience. This paper presents GENESIS-RL, a novel framework that leverages system-level safety considerations and reinforcement learning techniques to systematically generate naturalistic edge cases. By simulating challenging conditions that mimic the real-world situations, our framework aims to rigorously test entire system's safety and reliability. Although demonstrated within the autonomous driving application, our methodology is adaptable across diverse autonomous systems. Our experimental validation, conducted on high-fidelity simulator underscores the overall effectiveness of this framework.
Multi-Sensor and Multi-temporal High-Throughput Phenotyping for Monitoring and Early Detection of Water-Limiting Stress in Soybean
Jones, Sarah E., Ayanlade, Timilehin, Fallen, Benjamin, Jubery, Talukder Z., Singh, Arti, Ganapathysubramanian, Baskar, Sarkar, Soumik, Singh, Asheesh K.
Soybean production is susceptible to biotic and abiotic stresses, exacerbated by extreme weather events. Water limiting stress, i.e. drought, emerges as a significant risk for soybean production, underscoring the need for advancements in stress monitoring for crop breeding and production. This project combines multi-modal information to identify the most effective and efficient automated methods to investigate drought response. We investigated a set of diverse soybean accessions using multiple sensors in a time series high-throughput phenotyping manner to: (1) develop a pipeline for rapid classification of soybean drought stress symptoms, and (2) investigate methods for early detection of drought stress. We utilized high-throughput time-series phenotyping using UAVs and sensors in conjunction with machine learning (ML) analytics, which offered a swift and efficient means of phenotyping. The red-edge and green bands were most effective to classify canopy wilting stress. The Red-Edge Chlorophyll Vegetation Index (RECI) successfully differentiated susceptible and tolerant soybean accessions prior to visual symptom development. We report pre-visual detection of soybean wilting using a combination of different vegetation indices. These results can contribute to early stress detection methodologies and rapid classification of drought responses in screening nurseries for breeding and production applications.
Latent Diffusion Models for Structural Component Design
Herron, Ethan, Rade, Jaydeep, Jignasu, Anushrut, Ganapathysubramanian, Baskar, Balu, Aditya, Sarkar, Soumik, Krishnamurthy, Adarsh
Recent advances in generative modeling, namely Diffusion models, have revolutionized generative modeling, enabling high-quality image generation tailored to user needs. This paper proposes a framework for the generative design of structural components. Specifically, we employ a Latent Diffusion model to generate potential designs of a component that can satisfy a set of problem-specific loading conditions. One of the distinct advantages our approach offers over other generative approaches, such as generative adversarial networks (GANs), is that it permits the editing of existing designs. We train our model using a dataset of geometries obtained from structural topology optimization utilizing the SIMP algorithm. Consequently, our framework generates inherently near-optimal designs. Our work presents quantitative results that support the structural performance of the generated designs and the variability in potential candidate designs. Furthermore, we provide evidence of the scalability of our framework by operating over voxel domains with resolutions varying from $32^3$ to $128^3$. Our framework can be used as a starting point for generating novel near-optimal designs similar to topology-optimized designs.
Out-of-distribution detection algorithms for robust insect classification
Saadati, Mojdeh, Balu, Aditya, Chiranjeevi, Shivani, Jubery, Talukder Zaki, Singh, Asheesh K, Sarkar, Soumik, Singh, Arti, Ganapathysubramanian, Baskar
Deep learning-based approaches have produced models with good insect classification accuracy; Most of these models are conducive for application in controlled environmental conditions. One of the primary emphasis of researchers is to implement identification and classification models in the real agriculture fields, which is challenging because input images that are wildly out of the distribution (e.g., images like vehicles, animals, humans, or a blurred image of an insect or insect class that is not yet trained on) can produce an incorrect insect classification. Out-of-distribution (OOD) detection algorithms provide an exciting avenue to overcome these challenge as it ensures that a model abstains from making incorrect classification prediction of non-insect and/or untrained insect class images. We generate and evaluate the performance of state-of-the-art OOD algorithms on insect detection classifiers. These algorithms represent a diversity of methods for addressing an OOD problem. Specifically, we focus on extrusive algorithms, i.e., algorithms that wrap around a well-trained classifier without the need for additional co-training. We compared three OOD detection algorithms: (i) Maximum Softmax Probability, which uses the softmax value as a confidence score, (ii) Mahalanobis distance-based algorithm, which uses a generative classification approach; and (iii) Energy-Based algorithm that maps the input data to a scalar value, called energy. We performed an extensive series of evaluations of these OOD algorithms across three performance axes: (a) \textit{Base model accuracy}: How does the accuracy of the classifier impact OOD performance? (b) How does the \textit{level of dissimilarity to the domain} impact OOD performance? and (c) \textit{Data imbalance}: How sensitive is OOD performance to the imbalance in per-class sample size?
SpecXAI -- Spectral interpretability of Deep Learning Models
Druc, Stefan, Wooldridge, Peter, Krishnamurthy, Adarsh, Sarkar, Soumik, Balu, Aditya
Deep learning has become a ubiquitous, versatile, and powerful technique that has a wide range of applications across many different fields such as image and speech recognition, natural language processing, and self-driving cars. The most popular application of deep learning is in the area of computer vision, where deep learning models are used for vision tasks such as image classification, object detection, and segmentation. While effective and powerful, one of the challenges that is plaguing deep learning models is explainability [1-4]. Unlike traditional machine learning models, which can be understood through the use of simple mathematical equations, deep learning models are highly complex and difficult to interpret. This makes it difficult to understand how the model arrived at a particular decision, which can be a problem in areas such as healthcare [5], or finance [6, 7] where transparency is important.
3D Reconstruction of Protein Complex Structures Using Synthesized Multi-View AFM Images
Rade, Jaydeep, Sarkar, Soumik, Sarkar, Anwesha, Krishnamurthy, Adarsh
Recent developments in deep learning-based methods demonstrated its potential to predict the 3D protein structures using inputs such as protein sequences, Cryo-Electron microscopy (Cryo-EM) images of proteins, etc. However, these methods struggle to predict the protein complexes (PC), structures with more than one protein. In this work, we explore the atomic force microscope (AFM) assisted deep learning-based methods to predict the 3D structure of PCs. The images produced by AFM capture the protein structure in different and random orientations. These multi-view images can help train the neural network to predict the 3D structure of protein complexes. However, obtaining the dataset of actual AFM images is time-consuming and not a pragmatic task. We propose a virtual AFM imaging pipeline that takes a 'PDB' protein file and generates multi-view 2D virtual AFM images using volume rendering techniques. With this, we created a dataset of around 8K proteins. We train a neural network for 3D reconstruction called Pix2Vox++ using the synthesized multi-view 2D AFM images dataset. We compare the predicted structure obtained using a different number of views and get the intersection over union (IoU) value of 0.92 on the training dataset and 0.52 on the validation dataset. We believe this approach will lead to better prediction of the structure of protein complexes.
Neural PDE Solvers for Irregular Domains
Khara, Biswajit, Herron, Ethan, Jiang, Zhanhong, Balu, Aditya, Yang, Chih-Hsuan, Saurabh, Kumar, Jignasu, Anushrut, Sarkar, Soumik, Hegde, Chinmay, Krishnamurthy, Adarsh, Ganapathysubramanian, Baskar
Neural network-based approaches for solving partial differential equations (PDEs) have recently received special attention. However, the large majority of neural PDE solvers only apply to rectilinear domains, and do not systematically address the imposition of Dirichlet/Neumann boundary conditions over irregular domain boundaries. In this paper, we present a framework to neurally solve partial differential equations over domains with irregularly shaped (non-rectilinear) geometric boundaries. Our network takes in the shape of the domain as an input (represented using an unstructured point cloud, or any other parametric representation such as Non-Uniform Rational B-Splines) and is able to generalize to novel (unseen) irregular domains; the key technical ingredient to realizing this model is a novel approach for identifying the interior and exterior of the computational grid in a differentiable manner. We also perform a careful error analysis which reveals theoretical insights into several sources of error incurred in the model-building process. Finally, we showcase a wide variety of applications, along with favorable comparisons with ground truth solutions.
MDPGT: Momentum-based Decentralized Policy Gradient Tracking
Jiang, Zhanhong, Lee, Xian Yeow, Tan, Sin Yong, Tan, Kai Liang, Balu, Aditya, Lee, Young M., Hegde, Chinmay, Sarkar, Soumik
We propose a novel policy gradient method for multi-agent reinforcement learning, which leverages two different variance-reduction techniques and does not require large batches over iterations. Specifically, we propose a momentum-based decentralized policy gradient tracking (MDPGT) where a new momentum-based variance reduction technique is used to approximate the local policy gradient surrogate with importance sampling, and an intermediate parameter is adopted to track two consecutive policy gradient surrogates. Moreover, MDPGT provably achieves the best available sample complexity of $\mathcal{O}(N^{-1}\epsilon^{-3})$ for converging to an $\epsilon$-stationary point of the global average of $N$ local performance functions (possibly nonconcave). This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning, and when initialized with a single trajectory, the sample complexity matches those obtained by the existing decentralized policy gradient methods. We further validate the theoretical claim for the Gaussian policy function. When the required error tolerance $\epsilon$ is small enough, MDPGT leads to a linear speed up, which has been previously established in decentralized stochastic optimization, but not for reinforcement learning. Lastly, we provide empirical results on a multi-agent reinforcement learning benchmark environment to support our theoretical findings.