Goto

Collaborating Authors

 Sankararaman, Karthik Abinav


Stability of Linear Structural Equation Models of Causal Inference

arXiv.org Machine Learning

We consider the numerical stability of the parameter recovery problem in Linear Structural Equation Model ($\LSEM$) of causal inference. A long line of work starting from Wright (1920) has focused on understanding which sub-classes of $\LSEM$ allow for efficient parameter recovery. Despite decades of study, this question is not yet fully resolved. The goal of this paper is complementary to this line of work; we want to understand the stability of the recovery problem in the cases when efficient recovery is possible. Numerical stability of Pearl's notion of causality was first studied in Schulman and Srivastava (2016) using the concept of condition number where they provide ill-conditioned examples. In this work, we provide a condition number analysis for the $\LSEM$. First we prove that under a sufficient condition, for a certain sub-class of $\LSEM$ that are \emph{bow-free} (Brito and Pearl (2002)), the parameter recovery is stable. We further prove that \emph{randomly} chosen input parameters for this family satisfy the condition with a substantial probability. Hence for this family, on a large subset of parameter space, recovery is numerically stable. Next we construct an example of $\LSEM$ on four vertices with \emph{unbounded} condition number. We then corroborate our theoretical findings via simulations as well as real-world experiments for a sociology application. Finally, we provide a general heuristic for estimating the condition number of any $\LSEM$ instance.


Adversarial Bandits with Knapsacks

arXiv.org Machine Learning

We consider Bandits with Knapsacks (henceforth, BwK), a general model for multi-armed bandits under supply/budget constraints. In particular, a bandit algorithm needs to solve a well-known knapsack problem: find an optimal packing of items into a limited-size knapsack. The BwK problem is a common generalization of numerous motivating examples, which range from dynamic pricing to repeated auctions to dynamic ad allocation to network routing and scheduling. While the prior work on BwK focused on the stochastic version, we pioneer the other extreme in which the outcomes can be chosen adversarially. This is a considerably harder problem, compared to both the stochastic version and the "classic" adversarial bandits, in that regret minimization is no longer feasible. Instead, the objective is to minimize the competitive ratio: the ratio of the benchmark reward to the algorithm's reward. We design an algorithm with competitive ratio O(log T) relative to the best fixed distribution over actions, where T is the time horizon; we also prove a matching lower bound. The key conceptual contribution is a new perspective on the stochastic version of the problem. We suggest a new algorithm for the stochastic version, which builds on the framework of regret minimization in repeated games and admits a substantially simpler analysis compared to prior work. We then analyze this algorithm for the adversarial version and use it as a subroutine to solve the latter.


Attenuate Locally, Win Globally: An Attenuation-based Framework for Online Stochastic Matching with Timeouts

arXiv.org Artificial Intelligence

Online matching problems have garnered significant attention in recent years due to numerous applications in e-commerce, online advertisements, ride-sharing, etc. Many of them capture the uncertainty in the real world by including stochasticity in both the arrival process and the matching process. The Online Stochastic Matching with Timeouts problem introduced by Bansal, et al., (Algorithmica, 2012) models matching markets (e.g., E-Bay, Amazon). Buyers arrive from an independent and identically distributed (i.i.d.) known distribution on buyer profiles and can be shown a list of items one at a time. Each buyer has some probability of purchasing each item and a limit (timeout) on the number of items they can be shown. Bansal et al., (Algorithmica, 2012) gave a 0.12-competitive algorithm which was improved by Adamczyk, et al., (ESA, 2015) to 0.24. We present an online attenuation framework that uses an algorithm for offline stochastic matching as a black box. On the upper bound side, we show that this framework, combined with a black-box adapted from Bansal et al., (Algorithmica, 2012), yields an online algorithm which nearly doubles the ratio to 0.46. On the lower bound side, we show that no algorithm can achieve a ratio better than 0.632 using the standard LP for this problem. This framework has a high potential for further improvements since new algorithms for offline stochastic matching can directly improve the ratio for the online problem. Our online framework also has the potential for a variety of extensions. For example, we introduce a natural generalization: Online Stochastic Matching with Two-sided Timeouts in which both online and offline vertices have timeouts. Our framework provides the first algorithm for this problem achieving a ratio of 0.30. We once again use the algorithm of Adamczyk et al., (ESA, 2015) as a black-box and plug-it into our framework.