Samek, Wojciech
Robust Spatial Filtering with Beta Divergence
Samek, Wojciech, Blythe, Duncan, Müller, Klaus-Robert, Kawanabe, Motoaki
The efficiency of Brain-Computer Interfaces (BCI) largely depends upon a reliable extraction of informative features from the high-dimensional EEG signal. A crucial step in this protocol is the computation of spatial filters. The Common Spatial Patterns (CSP) algorithm computes filters that maximize the difference in band power between two conditions, thus it is tailored to extract the relevant information in motor imagery experiments. However, CSP is highly sensitive to artifacts in the EEG data, i.e. few outliers may alter the estimate drastically and decrease classification performance. Inspired by concepts from the field of information geometry we propose a novel approach for robustifying CSP. More precisely, we formulate CSP as a divergence maximization problem and utilize the property of a particular type of divergence, namely beta divergence, for robustifying the estimation of spatial filters in the presence of artifacts in the data. We demonstrate the usefulness of our method on toy data and on EEG recordings from 80 subjects.
Multiple Kernel Learning for Brain-Computer Interfacing
Samek, Wojciech, Binder, Alexander, Müller, Klaus-Robert
Combining information from different sources is a common way to improve classification accuracy in Brain-Computer Interfacing (BCI). For instance, in small sample settings it is useful to integrate data from other subjects or sessions in order to improve the estimation quality of the spatial filters or the classifier. Since data from different subjects may show large variability, it is crucial to weight the contributions according to importance. Many multi-subject learning algorithms determine the optimal weighting in a separate step by using heuristics, however, without ensuring that the selected weights are optimal with respect to classification. In this work we apply Multiple Kernel Learning (MKL) to this problem. MKL has been widely used for feature fusion in computer vision and allows to simultaneously learn the classifier and the optimal weighting. We compare the MKL method to two baseline approaches and investigate the reasons for performance improvement.
Transferring Subspaces Between Subjects in Brain-Computer Interfacing
Samek, Wojciech, Meinecke, Frank C., Müller, Klaus-Robert
Compensating changes between a subjects' training and testing session in Brain Computer Interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common non-stationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multi-subject methods that e.g. improve the covariance matrix estimation by shrinking it towards the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper we compare our approach to two state-of-the-art multi-subject methods on toy data and two data sets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.