Plotting

 Sala, Frederic


Ask Me Anything: A simple strategy for prompting language models

arXiv.org Artificial Intelligence

Large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt that demonstrates how to perform the task and no additional training. Prompting is a brittle process wherein small modifications to the prompt can cause large variations in the model predictions, and therefore significant effort is dedicated towards designing a painstakingly "perfect prompt" for a task. To mitigate the high degree of effort involved in prompt-design, we instead ask whether producing multiple effective, yet imperfect, prompts and aggregating them can lead to a high quality prompting strategy. Our observations motivate our proposed prompting method, ASK ME ANYTHING (AMA). We first develop an understanding of the effective prompt formats, finding that question-answering (QA) prompts, which encourage open-ended generation ("Who went to the park?") tend to outperform those that restrict the model outputs ("John went to the park. Output True or False."). Our approach recursively uses the LLM itself to transform task inputs to the effective QA format. We apply the collected prompts to obtain several noisy votes for the input's true label. We find that the prompts can have very different accuracies and complex dependencies and thus propose to use weak supervision, a procedure for combining the noisy predictions, to produce the final predictions for the inputs. We evaluate AMA across open-source model families (e.g., EleutherAI, BLOOM, OPT, and T0) and model sizes (125M-175B parameters), demonstrating an average performance lift of 10.2% over the few-shot baseline. This simple strategy enables the open-source GPT-J-6B model to match and exceed the performance of few-shot GPT3-175B on 15 of 20 popular benchmarks. Averaged across these tasks, the GPT-J-6B model outperforms few-shot GPT3-175B. We release our code here: https://github.com/HazyResearch/ama_prompting


Universalizing Weak Supervision

arXiv.org Artificial Intelligence

Weak supervision (WS) frameworks are a popular way to bypass hand-labeling large datasets for training data-hungry models. These approaches synthesize multiple noisy but cheaply-acquired estimates of labels into a set of high-quality pseudolabels for downstream training. However, the synthesis technique is specific to a particular kind of label, such as binary labels or sequences, and each new label type requires manually designing a new synthesis algorithm. Instead, we propose a universal technique that enables weak supervision over any label type while still offering desirable properties, including practical flexibility, computational efficiency, and theoretical guarantees. We apply this technique to important problems previously not tackled by WS frameworks including learning to rank, regression, and learning in hyperbolic manifolds. Theoretically, our synthesis approach produces a consistent estimator for learning a challenging but important generalization of the exponential family model. Experimentally, we validate our framework and show improvement over baselines in diverse settings including real-world learning-to-rank and regression problems along with learning on hyperbolic manifolds.


Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments Latent Variable Estimation

arXiv.org Machine Learning

Labeling data for modern machine learning is expensive and time-consuming. Latent variable models can be used to infer labels from weaker, easier-to-acquire sources operating on unlabeled data. Such models can also be trained using labeled data, presenting a key question: should a user invest in few labeled or many unlabeled points? We answer this via a framework centered on model misspecification in method-of-moments latent variable estimation. Our core result is a bias-variance decomposition of the generalization error, which shows that the unlabeled-only approach incurs additional bias under misspecification. We then introduce a correction that provably removes this bias in certain cases. We apply our decomposition framework to three scenarios -- well-specified, misspecified, and corrected models -- to 1) choose between labeled and unlabeled data and 2) learn from their combination. We observe theoretically and with synthetic experiments that for well-specified models, labeled points are worth a constant factor more than unlabeled points. With misspecification, however, their relative value is higher due to the additional bias but can be reduced with correction. We also apply our approach to study real-world weak supervision techniques for dataset construction.


Train and You'll Miss It: Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings

arXiv.org Machine Learning

Our goal is to enable machine learning systems to be trained interactively. This requires models that perform well and train quickly, without large amounts of hand-labeled data. We take a step forward in this direction by borrowing from weak supervision (WS), wherein models can be trained with noisy sources of signal instead of hand-labeled data. But WS relies on training downstream deep networks to extrapolate to unseen data points, which can take hours or days. Pre-trained embeddings can remove this requirement. We do not use the embeddings as features as in transfer learning (TL), which requires fine-tuning for high performance, but instead use them to define a distance function on the data and extend WS source votes to nearby points. Theoretically, we provide a series of results studying how performance scales with changes in source coverage, source accuracy, and the Lipschitzness of label distributions in the embedding space, and compare this rate to standard WS without extension and TL without fine-tuning. On six benchmark NLP and video tasks, our method outperforms WS without extension by 4.1 points, TL without fine-tuning by 12.8 points, and traditionally-supervised deep networks by 13.1 points, and comes within 0.7 points of state-of-the-art weakly-supervised deep networks--all while training in less than half a second.


Learning Dependency Structures for Weak Supervision Models

arXiv.org Machine Learning

Labeling training data is a key bottleneck in the modern machine learning pipeline. Recent weak supervision approaches combine labels from multiple noisy sources by estimating their accuracies without access to ground truth labels; however, estimating the dependencies among these sources is a critical challenge. We focus on a robust PCA-based algorithm for learning these dependency structures, establish improved theoretical recovery rates, and outperform existing methods on various real-world tasks. Under certain conditions, we show that the amount of unlabeled data needed can scale sublinearly or even logarithmically with the number of sources $m$, improving over previous efforts that ignore the sparsity pattern in the dependency structure and scale linearly in $m$. We provide an information-theoretic lower bound on the minimum sample complexity of the weak supervision setting. Our method outperforms weak supervision approaches that assume conditionally-independent sources by up to 4.64 F1 points and previous structure learning approaches by up to 4.41 F1 points on real-world relation extraction and image classification tasks.


Training Complex Models with Multi-Task Weak Supervision

arXiv.org Machine Learning

As machine learning models continue to increase in complexity, collecting large hand-labeled training sets has become one of the biggest roadblocks in practice. Instead, weaker forms of supervision that provide noisier but cheaper labels are often used. However, these weak supervision sources have diverse and unknown accuracies, may output correlated labels, and may label different tasks or apply at different levels of granularity. We propose a framework for integrating and modeling such weak supervision sources by viewing them as labeling different related sub-tasks of a problem, which we refer to as the multi-task weak supervision setting. We show that by solving a matrix completion-style problem, we can recover the accuracies of these multi-task sources given their dependency structure, but without any labeled data, leading to higher-quality supervision for training an end model. Theoretically, we show that the generalization error of models trained with this approach improves with the number of unlabeled data points, and characterize the scaling with respect to the task and dependency structures. On three fine-grained classification problems, we show that our approach leads to average gains of 20.2 points in accuracy over a traditional supervised approach, 6.8 points over a majority vote baseline, and 4.1 points over a previously proposed weak supervision method that models tasks separately.


Representation Tradeoffs for Hyperbolic Embeddings

arXiv.org Machine Learning

Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.


Don't Fear the Bit Flips: Optimized Coding Strategies for Binary Classification

arXiv.org Machine Learning

After being trained, classifiers must often operate on data that has been corrupted by noise. In this paper, we consider the impact of such noise on the features of binary classifiers. Inspired by tools for classifier robustness, we introduce the same classification probability (SCP) to measure the resulting distortion on the classifier outputs. We introduce a low-complexity estimate of the SCP based on quantization and polynomial multiplication. We also study channel coding techniques based on replication error-correcting codes. In contrast to the traditional channel coding approach, where error-correction is meant to preserve the data and is agnostic to the application, our schemes specifically aim to maximize the SCP (equivalently minimizing the distortion of the classifier output) for the same redundancy overhead.