Sajda, Paul
Compact Convolutional Neural Networks for Classification of Asynchronous Steady-state Visual Evoked Potentials
Waytowich, Nicholas R., Lawhern, Vernon, Garcia, Javier O., Cummings, Jennifer, Faller, Josef, Sajda, Paul, Vettel, Jean M.
Steady-State Visual Evoked Potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are commonly used in brain-computer interfaces (BCIs). However, methods for high-accuracy decoding of SSVEPs usually require hand-crafted approaches that leverage domain-specific knowledge of the stimulus signals, such as specific temporal frequencies in the visual stimuli and their relative spatial arrangement. When this knowledge is unavailable, such as when SSVEP signals are acquired asynchronously, such approaches tend to fail. In this paper, we show how a compact convolutional neural network (Compact-CNN), which only requires raw EEG signals for automatic feature extraction, can be used to decode signals from a 12-class SSVEP dataset without the need for any domain-specific knowledge or calibration data. We report across subject mean accuracy of approximately 80% (chance being 8.3%) and show this is substantially better than current state-of-the-art hand-crafted approaches using canonical correlation analysis (CCA) and Combined-CCA. Furthermore, we analyze our Compact-CNN to examine the underlying feature representation, discovering that the deep learner extracts additional phase and amplitude related features associated with the structure of the dataset. We discuss how our Compact-CNN shows promise for BCI applications that allow users to freely gaze/attend to any stimulus at any time (e.g., asynchronous BCI) as well as provides a method for analyzing SSVEP signals in a way that might augment our understanding about the basic processing in the visual cortex.
Towards personalized human AI interaction - adapting the behavior of AI agents using neural signatures of subjective interest
Shih, Victor, Jangraw, David C, Sajda, Paul, Saproo, Sameer
Reinforcement Learning AI commonly uses reward/penalty signals that are objective and explicit in an environment -- e.g. game score, completion time, etc. -- in order to learn the optimal strategy for task performance. However, Human-AI interaction for such AI agents should include additional reinforcement that is implicit and subjective -- e.g. human preferences for certain AI behavior -- in order to adapt the AI behavior to idiosyncratic human preferences. Such adaptations would mirror naturally occurring processes that increase trust and comfort during social interactions. Here, we show how a hybrid brain-computer-interface (hBCI), which detects an individual's level of interest in objects/events in a virtual environment, can be used to adapt the behavior of a Deep Reinforcement Learning AI agent that is controlling a virtual autonomous vehicle. Specifically, we show that the AI learns a driving strategy that maintains a safe distance from a lead vehicle, and most novelly, preferentially slows the vehicle when the human passengers of the vehicle encounter objects of interest. This adaptation affords an additional 20\% viewing time for subjectively interesting objects. This is the first demonstration of how an hBCI can be used to provide implicit reinforcement to an AI agent in a way that incorporates user preferences into the control system.
A comparison of single-trial EEG classification and EEG-informed fMRI across three MR compatible EEG recording systems
Faller, Josef, Hong, Linbi, Cummings, Jennifer, Sajda, Paul
Simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can be used to non-invasively measure the spatiotemporal dynamics of the human brain. One challenge is dealing with the artifacts that each modality introduces into the other when the two are recorded concurrently, for example the ballistocardiogram (BCG). We conducted a preliminary comparison of three different MR compatible EEG recording systems and assessed their performance in terms of single-trial classification of the EEG when simultaneously collecting fMRI. We found tradeoffs across all three systems, for example varied ease of setup and improved classification accuracy with reference electrodes (REF) but not for pulse artifact subtraction (PAS) or reference layer adaptive filtering (RLAF).
Fast Simultaneous Training of Generalized Linear Models (FaSTGLZ)
Conroy, Bryan R., Walz, Jennifer M., Cheung, Brian, Sajda, Paul
We present an efficient algorithm for simultaneously training sparse generalized linear models across many related problems, which may arise from bootstrapping, cross-validation and nonparametric permutation testing. Our approach leverages the redundancies across problems to obtain significant computational improvements relative to solving the problems sequentially by a conventional algorithm. We demonstrate our fast simultaneous training of generalized linear models (FaSTGLZ) algorithm on a number of real-world datasets, and we run otherwise computationally intensive bootstrapping and permutation test analyses that are typically necessary for obtaining statistically rigorous classification results and meaningful interpretation. Code is freely available at http://liinc.bme.columbia.edu/fastglz.
Second Order Bilinear Discriminant Analysis for single trial EEG analysis
Christoforou, Christoforos, Sajda, Paul, Parra, Lucas C.
Traditional analysis methods for single-trial classification of electro-encephalography (EEG) focus on two types of paradigms: phase locked methods, in which the amplitude of the signal is used as the feature for classification, i.e. event related potentials; and second order methods, in which the feature of interest is the power of the signal, i.e event related (de)synchronization. The process of deciding which paradigm to use is ad hoc and is driven by knowledge of neurological findings. Here we propose a unified method in which the algorithm learns the best first and second order spatial and temporal features for classification of EEG based on a bilinear model. The efficiency of the method is demonstrated in simulated and real EEG from a benchmark data set for Brain Computer Interface.
Higher-Order Statistical Properties Arising from the Non-Stationarity of Natural Signals
Parra, Lucas C., Spence, Clay, Sajda, Paul
We present evidence that several higher-order statistical properties of natural images and signals can be explained by a stochastic model which simply varies scale of an otherwise stationary Gaussian process. We discuss two interesting consequences. The first is that a variety of natural signals can be related through a common model of spherically invariant random processes, which have the attractive property that the joint densities can be constructed from the one dimensional marginal. The second is that in some cases the non-stationarity assumption and only second order methods can be explicitly exploited to find a linear basis that is equivalent to independent components obtained with higher-order methods. This is demonstrated on spectro-temporal components of speech. 1 Introduction Recently, considerable attention has been paid to understanding and modeling the non-Gaussian or "higher-order" properties of natural signals, particularly images. Several non-Gaussian properties have been identified and studied.
Higher-Order Statistical Properties Arising from the Non-Stationarity of Natural Signals
Parra, Lucas C., Spence, Clay, Sajda, Paul
We present evidence that several higher-order statistical properties of natural images and signals can be explained by a stochastic model which simply varies scale of an otherwise stationary Gaussian process. We discuss two interesting consequences. The first is that a variety of natural signals can be related through a common model of spherically invariant random processes, which have the attractive property that the joint densities can be constructed from the one dimensional marginal. The second is that in some cases the non-stationarity assumption and only second order methods can be explicitly exploited to find a linear basis that is equivalent to independent components obtained with higher-order methods. This is demonstrated on spectro-temporal components of speech. 1 Introduction Recently, considerable attention has been paid to understanding and modeling the non-Gaussian or "higher-order" properties of natural signals, particularly images. Several non-Gaussian properties have been identified and studied.
Higher-Order Statistical Properties Arising from the Non-Stationarity of Natural Signals
Parra, Lucas C., Spence, Clay, Sajda, Paul
The first is that a variety of natural signals can be related through a common modelof spherically invariant random processes, which have the attractive property that the joint densities can be constructed from the one dimensional marginal. The second is that in some cases thenon-stationarity assumption and only second order methods can be explicitly exploited to find a linear basis that is equivalent to independent components obtained with higher-order methods. This is demonstrated on spectro-temporal components of speech. 1 Introduction Recently, considerable attention has been paid to understanding and modeling the non-Gaussian or "higher-order" properties of natural signals, particularly images. Several non-Gaussian properties have been identified and studied. For example, marginal densities of features have been shown to have high kurtosis or "heavy tails", indicating a non-Gaussian, sparse representation. Another example is the "bowtie" shape of conditional distributions of neighboring features, indicating dependence ofvariances [11]. These non-Gaussian properties have motivated a number of image and signal processing algorithms that attempt to exploit higher-order s tatistics of the signals, e.g., for blind source separation. In this paper we show that these previously observed higher-order phenomena are ubiquitous and can be accounted for by a model which simply varies the scale of an otherwise stationary Gaussianprocess. This enables us to relate a variety of natural signals to one another and to spherically invariant random processes, which are well-known in the signal processing literature [6, 3].
Unmixing Hyperspectral Data
Parra, Lucas C., Spence, Clay, Sajda, Paul, Ziehe, Andreas, Müller, Klaus-Robert
In hyperspectral imagery one pixel typically consists of a mixture of the reflectance spectra of several materials, where the mixture coefficients correspond to the abundances of the constituting materials. Weassume linear combinations of reflectance spectra with some additive normal sensor noise and derive a probabilistic MAP framework for analyzing hyperspectral data. As the material reflectance characteristicsare not know a priori, we face the problem of unsupervised linear unmixing.