Not enough data to create a plot.
Try a different view from the menu above.
Sahu, Gaurav
LyricJam: A system for generating lyrics for live instrumental music
Vechtomova, Olga, Sahu, Gaurav, Kumar, Dhruv
We describe a real-time system that receives a live audio stream from a jam session and generates lyric lines that are congruent with the live music being played. Two novel approaches are proposed to align the learned latent spaces of audio and text representations that allow the system to generate novel lyric lines matching live instrumental music. One approach is based on adversarial alignment of latent representations of audio and lyrics, while the other approach learns to transfer the topology from the music latent space to the lyric latent space. A user study with music artists using the system showed that the system was useful not only in lyric composition, but also encouraged the artists to improvise and find new musical expressions. Another user study demonstrated that users preferred the lines generated using the proposed methods to the lines generated by a baseline model.
Towards A Multi-agent System for Online Hate Speech Detection
Sahu, Gaurav, Cohen, Robin, Vechtomova, Olga
This paper envisions a multi-agent system for detecting the presence of hate speech in online social media platforms such as Twitter and Facebook. We introduce a novel framework employing deep learning techniques to coordinate the channels of textual and im-age processing. Our experimental results aim to demonstrate the effectiveness of our methods for classifying online content, training the proposed neural network model to effectively detect hateful instances in the input. We conclude with a discussion of how our system may be of use to provide recommendations to users who are managing online social networks, showcasing the immense potential of intelligent multi-agent systems towards delivering social good.
Multimodal Speech Emotion Recognition and Ambiguity Resolution
Sahu, Gaurav
Identifying emotion from speech is a non-trivial task pertaining to the ambiguous definition of emotion itself. In this work, we adopt a feature-engineering based approach to tackle the task of speech emotion recognition. Formalizing our problem as a multi-class classification problem, we compare the performance of two categories of models. For both, we extract eight hand-crafted features from the audio signal. In the first approach, the extracted features are used to train six traditional machine learning classifiers, whereas the second approach is based on deep learning wherein a baseline feed-forward neural network and an LSTM-based classifier are trained over the same features. In order to resolve ambiguity in communication, we also include features from the text domain. We report accuracy, f-score, precision, and recall for the different experiment settings we evaluated our models in. Overall, we show that lighter machine learning based models trained over a few hand-crafted features are able to achieve performance comparable to the current deep learning based state-of-the-art method for emotion recognition.