Goto

Collaborating Authors

 Sachan, Mrinmaya


LLM-based Cognitive Models of Students with Misconceptions

arXiv.org Artificial Intelligence

Accurately modeling student cognition is crucial for developing effective AI-driven educational technologies. A key challenge is creating realistic student models that satisfy two essential properties: (1) accurately replicating specific misconceptions, and (2) correctly solving problems where these misconceptions are not applicable. This dual requirement reflects the complex nature of student understanding, where misconceptions coexist with correct knowledge. This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement and effectively simulate student thinking in algebra. We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns through a graph-based representation of algebraic problem-solving. Utilizing MalAlgoPy, we define and examine Cognitive Student Models (CSMs) - LLMs instruction tuned to faithfully emulate realistic student behavior. Our findings reveal that LLMs trained on misconception examples can efficiently learn to replicate errors. However, the training diminishes the model's ability to solve problems correctly, particularly for problem types where the misconceptions are not applicable, thus failing to satisfy second property of CSMs. We demonstrate that by carefully calibrating the ratio of correct to misconception examples in the training data - sometimes as low as 0.25 - it is possible to develop CSMs that satisfy both properties. Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.


Towards the Pedagogical Steering of Large Language Models for Tutoring: A Case Study with Modeling Productive Failure

arXiv.org Artificial Intelligence

One-to-one tutoring is one of the most efficient methods of teaching. Following the rise in popularity of Large Language Models (LLMs), there have been efforts to use them to create conversational tutoring systems, which can make the benefits of one-to-one tutoring accessible to everyone. However, current LLMs are primarily trained to be helpful assistants and thus lack crucial pedagogical skills. For example, they often quickly reveal the solution to the student and fail to plan for a richer multi-turn pedagogical interaction. To use LLMs in pedagogical scenarios, they need to be steered towards using effective teaching strategies: a problem we introduce as Pedagogical Steering and believe to be crucial for the efficient use of LLMs as tutors. We address this problem by formalizing a concept of tutoring strategy, and introducing StratL, an algorithm to model a strategy and use prompting to steer the LLM to follow this strategy. As a case study, we create a prototype tutor for high school math following Productive Failure (PF), an advanced and effective learning design. To validate our approach in a real-world setting, we run a field study with 17 high school students in Singapore. We quantitatively show that StratL succeeds in steering the LLM to follow a Productive Failure tutoring strategy. We also thoroughly investigate the existence of spillover effects on desirable properties of the LLM, like its ability to generate human-like answers. Based on these results, we highlight the challenges in Pedagogical Steering and suggest opportunities for further improvements. We further encourage follow-up research by releasing a dataset of Productive Failure problems and the code of our prototype and algorithm.


Automated Knowledge Concept Annotation and Question Representation Learning for Knowledge Tracing

arXiv.org Artificial Intelligence

Knowledge tracing (KT) is a popular approach for modeling students' learning progress over time, which can enable more personalized and adaptive learning. However, existing KT approaches face two major limitations: (1) they rely heavily on expert-defined knowledge concepts (KCs) in questions, which is timeconsuming and prone to errors; and (2) KT methods tend to overlook the semantics of both questions and the given KCs. In this work, we address these challenges and present KCQRL, a framework for automated knowledge concept annotation and question representation learning that can improve the effectiveness of any existing KT model. First, we propose an automated KC annotation process using large language models (LLMs), which generates question solutions and then annotates KCs in each solution step of the questions. Second, we introduce a contrastive learning approach to generate semantically rich embeddings for questions and solution steps, aligning them with their associated KCs via a tailored false negative elimination approach. These embeddings can be readily integrated into existing KT models, replacing their randomly initialized embeddings. We demonstrate the effectiveness of KCQRL across 15 KT models on two large real-world Math learning datasets, where we achieve consistent performance improvements. The recent years have witnessed a surge in online learning platforms (Adedoyin & Soykan, 2023; Gros & García-Peñalvo, 2023), where students learn new knowledge concepts, which are then tested through exercises. Needless to say, personalization is crucial for effective learning: it allows that new knowledge concepts are carefully tailored to the current knowledge state of the student, which is more effective than one-size-fits-all approaches to learning (Cui & Sachan, 2023; Xu et al., 2024). However, such personalization requires that the knowledge of students is continuously assessed, which highlights the need for knowledge tracing (KT). In KT, one models the temporal dynamics of students' learning processes (Corbett & Anderson, 1994) in terms of a core set of skills, which are called knowledge concepts (KCs). KT models are typically time-series models that receive the past interactions of the learner as input (e.g., her previous exercises) in order to predict response of the learner to the next exercise. Yet, existing KT models have two main limitations that hinder their applicability in practice (see Figure 1). They require a comprehensive mapping between KCs and questions, which is typically done through manual annotations by experts. However, such KC annotation is both time-intensive and prone to errors (Clark, 2014; Bier et al., 2019). KT models overlook the semantics of both questions and KCs.


Do Vision-Language Models Really Understand Visual Language?

arXiv.org Artificial Intelligence

Visual language is a system of communication that conveys information through symbols, shapes, and spatial arrangements. Diagrams are a typical example of a visual language depicting complex concepts and their relationships in the form of an image. The symbolic nature of diagrams presents significant challenges for building models capable of understanding them. Yet, recent studies seem to suggest that Large Vision-Language Models (LVLMs) can even tackle complex reasoning tasks involving diagrams. In this paper, we investigate this phenomenon by developing a comprehensive test suite to evaluate the diagram comprehension capability of LVLMs. Our test suite uses a variety of questions focused on concept entities and their relationships over a set of synthetic as well as real diagrams across several domains to evaluate the recognition and reasoning abilities of models. Our evaluation of three LVLMs (GPT-4V, GPT-4o, and Gemini) shows that while these models can accurately identify and reason about entities, their ability to understand relationships is notably limited. Further testing reveals that the decent performance on diagram understanding largely stems from leveraging their background knowledge as shortcuts to identify and reason about the relational information. Thus, we conclude that LVLMs have a limited capability for genuine diagram understanding, and their impressive performance in diagram reasoning is an illusion emanating from other confounding factors, such as the background knowledge in the models.


Retro-li: Small-Scale Retrieval Augmented Generation Supporting Noisy Similarity Searches and Domain Shift Generalization

arXiv.org Artificial Intelligence

The retrieval augmented generation (RAG) system such as Retro has been shown to improve language modeling capabilities and reduce toxicity and hallucinations by retrieving from a database of non-parametric memory containing trillions of entries. We introduce Retro-li that shows retrieval can also help using a small-scale database, but it demands more accurate and better neighbors when searching in a smaller hence sparser non-parametric memory. This can be met by using a proper semantic similarity search. We further propose adding a regularization to the non-parametric memory for the first time: it significantly reduces perplexity when the neighbor search operations are noisy during inference, and it improves generalization when a domain shift occurs. We also show that Retro-li's non-parametric memory can potentially be implemented on analog in-memory computing hardware, exhibiting O(1) search time while causing noise in retrieving neighbors, with minimal (<1%) performance loss. Our code is available at: https://github.com/IBM/Retrieval-Enhanced-Transformer-Little.


Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors

arXiv.org Artificial Intelligence

Large language models (LLMs) present an opportunity to scale high-quality personalized education to all. A promising approach towards this means is to build dialog tutoring models that scaffold students' problem-solving. However, even though existing LLMs perform well in solving reasoning questions, they struggle to precisely detect student's errors and tailor their feedback to these errors. Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions and show how grounding to such verification improves the overall quality of tutor response generation. We collect a dataset of 1K stepwise math reasoning chains with the first error step annotated by teachers. We show empirically that finding the mistake in a student solution is challenging for current models. We propose and evaluate several verifiers for detecting these errors. Using both automatic and human evaluation we show that the student solution verifiers steer the generation model towards highly targeted responses to student errors which are more often correct with less hallucinations compared to existing baselines.


Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents

arXiv.org Artificial Intelligence

As AI systems pervade human life, ensuring that large language models (LLMs) make safe decisions remains a significant challenge. We introduce the Governance of the Commons Simulation (GovSim), a generative simulation platform designed to study strategic interactions and cooperative decision-making in LLMs. In GovSim, a society of AI agents must collectively balance exploiting a common resource with sustaining it for future use. This environment enables the study of how ethical considerations, strategic planning, and negotiation skills impact cooperative outcomes. We develop an LLM-based agent architecture and test it with the leading open and closed LLMs. We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%. Ablations reveal that successful multi-agent communication between agents is critical for achieving cooperation in these cases. Furthermore, our analyses show that the failure to achieve sustainable cooperation in most LLMs stems from their inability to formulate and analyze hypotheses about the long-term effects of their actions on the equilibrium of the group. Finally, we show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability. Taken together, GovSim enables us to study the mechanisms that underlie sustainable self-government with specificity and scale. We open source the full suite of our research results, including the simulation environment, agent prompts, and a comprehensive web interface.


Multilingual Trolley Problems for Language Models

arXiv.org Artificial Intelligence

As large language models (LLMs) are deployed in more and more real-world situations, it is crucial to understand their decision-making when faced with moral dilemmas. Inspired by a large-scale cross-cultural study of human moral preferences, "The Moral Machine Experiment", we set up the same set of moral choices for LLMs. We translate 1K vignettes of moral dilemmas, parametrically varied across key axes, into 100+ languages, and reveal the preferences of LLMs in each of these languages. We then compare the responses of LLMs to that of human speakers of those languages, harnessing a dataset of 40 million human moral judgments. We discover that LLMs are more aligned with human preferences in languages such as English, Korean, Hungarian, and Chinese, but less aligned in languages such as Hindi and Somali (in Africa). Moreover, we characterize the explanations LLMs give for their moral choices and find that fairness is the most dominant supporting reason behind GPT-4's decisions and utilitarianism by GPT-3. We also discover "language inequality" (which we define as the model's different development levels in different languages) in a series of meta-properties of moral decision making.


Confidence Regulation Neurons in Language Models

arXiv.org Artificial Intelligence

Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.


DIRAS: Efficient LLM-Assisted Annotation of Document Relevance in Retrieval Augmented Generation

arXiv.org Artificial Intelligence

Retrieval Augmented Generation (RAG) is widely employed to ground responses to queries on domain-specific documents. But do RAG implementations leave out important information or excessively include irrelevant information? To allay these concerns, it is necessary to annotate domain-specific benchmarks to evaluate information retrieval (IR) performance, as relevance definitions vary across queries and domains. Furthermore, such benchmarks should be cost-efficiently annotated to avoid annotation selection bias. In this paper, we propose DIRAS (Domain-specific Information Retrieval Annotation with Scalability), a manual-annotation-free schema that fine-tunes open-sourced LLMs to annotate relevance labels with calibrated relevance probabilities. Extensive evaluation shows that DIRAS fine-tuned models achieve GPT-4-level performance on annotating and ranking unseen (query, document) pairs, and is helpful for real-world RAG development.