Plotting

 Sabokrou, Mohammad


Cluster-Based Partitioning of Convolutional Neural Networks, A Solution for Computational Energy and Complexity Reduction

arXiv.org Machine Learning

In this paper, we propose a novel solution to reduce the computational complexity of convolutional neural network models used for many class image classification. Our proposed model breaks the classification task into three stages: 1) general feature extraction, 2) Mid-level clustering, and 3) hyper-class classification. Steps 1 and 2 could be repeated to build larger hierarchical models. We illustrate that our proposed classifier can reach the level of accuracy reported by the best in class classification models with far less computational complexity (Flop Count) by only activating parts of the model that are needed for the image classification.


End-to-End Adversarial Learning for Intrusion Detection in Computer Networks

arXiv.org Machine Learning

This paper presents a simple yet efficient method for an anomaly-based Intrusion Detection System (IDS). In reality, IDSs can be defined as a one-class classification system, where the normal traffic is the target class. The high diversity of network attacks in addition to the need for generalization, motivate us to propose a semi-supervised method. Inspired by the successes of Generative Adversarial Networks (GANs) for training deep models in semi-unsupervised setting, we have proposed an end-to-end deep architecture for IDS. The proposed architecture is composed of two deep networks, each of which trained by competing with each other to understand the underlying concept of the normal traffic class. The key idea of this paper is to compensate the lack of anomalous traffic by approximately obtain them from normal flows. In this case, our method is not biased towards the available intrusions in the training set leading to more accurate detection. The proposed method has been evaluated on NSL-KDD dataset. The results confirm that our method outperforms the other state-of-the-art approaches.