Søgaard, Anders
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
Felbo, Bjarke, Mislove, Alan, Søgaard, Anders, Rahwan, Iyad, Lehmann, Sune
NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches.
Multi-Task Learning of Keyphrase Boundary Classification
Augenstein, Isabelle, Søgaard, Anders
Keyphrase boundary classification (KBC) is the task of detecting keyphrases in scientific articles and labelling them with respect to predefined types. Although important in practice, this task is so far underexplored, partly due to the lack of labelled data. To overcome this, we explore several auxiliary tasks, including semantic super-sense tagging and identification of multi-word expressions, and cast the task as a multi-task learning problem with deep recurrent neural networks. Our multi-task models perform significantly better than previous state of the art approaches on two scientific KBC datasets, particularly for long keyphrases.
Spikes as regularizers
Søgaard, Anders
We present a confidence-based single-layer feed-forward learning algorithm SPIRAL (Spike Regularized Adaptive Learning) relying on an encoding of activation spikes. We adaptively update a weight vector relying on confidence estimates and activation offsets relative to previous activity. We regularize updates proportionally to item-level confidence and weight-specific support, loosely inspired by the observation from neurophysiology that high spike rates are sometimes accompanied by low temporal precision. Our experiments suggest that the new learning algorithm SPIRAL is more robust and less prone to overfitting than both the averaged perceptron and AROW.
Using Frame Semantics for Knowledge Extraction from Twitter
Søgaard, Anders (University of Copenhagen) | Plank, Barbara (University of Copenhagen) | Alonso, Hector Martinez (University of Copenhagen)
Knowledge bases have the potential to advance artificial intelligence, but often suffer from recall problems, i.e., lack of knowledge of new entities and relations. On the contrary, social media such as Twitter provide abundance of data, in a timely manner: information spreads at an incredible pace and is posted long before it makes it into more commonly used resources for knowledge extraction. In this paper we address the question whether we can exploit social media to extract new facts, which may at first seem like finding needles in haystacks. We collect tweets about 60 entities in Freebase and compare four methods to extract binary relation candidates, based on syntactic and semantic parsing and simple mechanism for factuality scoring. The extracted facts are manually evaluated in terms of their correctness and relevance for search. We show that moving from bottom-up syntactic or semantic dependency parsing formalisms to top-down frame-semantic processing improves the robustness of knowledge extraction, producing more intelligible fact candidates of better quality. In order to evaluate the quality of frame semantic parsing on Twitter intrinsically, we make a multiply frame-annotated dataset of tweets publicly available.