Plotting

 Russo, Alessandra


DeepLogic: End-to-End Logical Reasoning

arXiv.org Artificial Intelligence

Neural networks have been learning complex multi-hop reasoning in various domains. One such formal setting for reasoning, logic, provides a challenging case for neural networks. In this article, we propose a Neural Inference Network (NIN) for learning logical inference over classes of logic programs. Trained in an end-to-end fashion NIN learns representations of normal logic programs, by processing them at a character level, and the reasoning algorithm for checking whether a logic program entails a given query. We define 12 classes of logic programs that exemplify increased level of complexity of the inference process (multi-hop and default reasoning) and show that our NIN passes 10 out of the 12 tasks. We also analyse the learnt representations of logic programs that NIN uses to perform the logical inference.


Learning Weak Constraints in Answer Set Programming

arXiv.org Artificial Intelligence

This paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples as ordered pairs of partial answer sets that exemplify which answer sets of a learned hypothesis (together with a given background knowledge) are preferred to others. In this new learning task inductive solutions are searched within a hypothesis space of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2, which is sound and complete with respect to our new learning framework. We investigate its applicability to learning preferences in an interview scheduling problem and also demonstrate that when restricted to the task of learning ASP programs without weak constraints, ILASP2 can be much more efficient than our previously proposed system.