Rudin, Cynthia
Multitask Learning for Citation Purpose Classification
Oesterling, Alex, Ghosal, Angikar, Yu, Haoyang, Xin, Rui, Baig, Yasa, Semenova, Lesia, Rudin, Cynthia
We present our entry into the 2021 3C Shared Task Citation Context Classification based on Purpose competition. The goal of the competition is to classify a citation in a scientific article based on its purpose. This task is important because it could potentially lead to more comprehensive ways of summarizing the purpose and uses of scientific articles, but it is also difficult, mainly due to the limited amount of available training data in which the purposes of each citation have been hand-labeled, along with the subjectivity of these labels. Our entry in the competition is a multi-task model that combines multiple modules designed to handle the problem from different perspectives, including hand-generated linguistic features, TF-IDF features, and an LSTM-with-attention model. We also provide an ablation study and feature analysis whose insights could lead to future work.
Causal Rule Sets for Identifying Subgroups with Enhanced Treatment Effect
Wang, Tong, Rudin, Cynthia
A key question in causal inference analyses is how to find subgroups with elevated treatment effects. This paper takes a machine learning approach and introduces a generative model, Causal Rule Sets (CRS), for interpretable subgroup discovery. A CRS model uses a small set of short decision rules to capture a subgroup where the average treatment effect is elevated. We present a Bayesian framework for learning a causal rule set. The Bayesian model consists of a prior that favors simple models for better interpretability as well as avoiding overfitting, and a Bayesian logistic regression that captures the likelihood of data, characterizing the relation between outcomes, attributes, and subgroup membership. The Bayesian model has tunable parameters that can characterize subgroups with various sizes, providing users with more flexible choices of models from the \emph{treatment efficient frontier}. We find maximum a posteriori models using iterative discrete Monte Carlo steps in the joint solution space of rules sets and parameters. To improve search efficiency, we provide theoretically grounded heuristics and bounding strategies to prune and confine the search space. Experiments show that the search algorithm can efficiently recover true underlying subgroups. We apply CRS on public and real-world datasets from domains where interpretability is indispensable. We compare CRS with state-of-the-art rule-based subgroup discovery models. Results show that CRS achieved consistently competitive performance on datasets from various domains, represented by high treatment efficient frontiers.
Playing Codenames with Language Graphs and Word Embeddings
Koyyalagunta, Divya, Sun, Anna, Draelos, Rachel Lea, Rudin, Cynthia
Although board games and video games have been studied for decades in artificial intelligence research, challenging word games remain relatively unexplored. Word games are not as constrained as games like chess or poker. Instead, word game strategy is defined by the players' understanding of the way words relate to each other. The word game Codenames provides a unique opportunity to investigate common sense understanding of relationships between words, an important open challenge. We propose an algorithm that can generate Codenames clues from the language graph BabelNet or from any of several embedding methods - word2vec, GloVe, fastText or BERT. We introduce a new scoring function that measures the quality of clues, and we propose a weighting term called DETECT that incorporates dictionary-based word representations and document frequency to improve clue selection. We develop BabelNet-Word Selection Framework (BabelNet-WSF) to improve BabelNet clue quality and overcome the computational barriers that previously prevented leveraging language graphs for Codenames. Extensive experiments with human evaluators demonstrate that our proposed innovations yield state-of-the-art performance, with up to 102.8% improvement in precision@2 in some cases.
Ethical Implementation of Artificial Intelligence to Select Embryos in In Vitro Fertilization
Afnan, Michael Anis Mihdi, Rudin, Cynthia, Conitzer, Vincent, Savulescu, Julian, Mishra, Abhishek, Liu, Yanhe, Afnan, Masoud
AI has the potential to revolutionize many areas of healthcare. Radiology, dermatology, and ophthalmology are some of the areas most likely to be impacted in the near future, and they have received significant attention from the broader research community. But AI techniques are now also starting to be used in in vitro fertilization (IVF), in particular for selecting which embryos to transfer to the woman. The contribution of AI to IVF is potentially significant, but must be done carefully and transparently, as the ethical issues are significant, in part because this field involves creating new people. We first give a brief introduction to IVF and review the use of AI for embryo selection. We discuss concerns with the interpretation of the reported results from scientific and practical perspectives. We then consider the broader ethical issues involved. We discuss in detail the problems that result from the use of black-box methods in this context and advocate strongly for the use of interpretable models. Importantly, there have been no published trials of clinical effectiveness, a problem in both the AI and IVF communities, and we therefore argue that clinical implementation at this point would be premature. Finally, we discuss ways for the broader AI community to become involved to ensure scientifically sound and ethically responsible development of AI in IVF.
IAIA-BL: A Case-based Interpretable Deep Learning Model for Classification of Mass Lesions in Digital Mammography
Barnett, Alina Jade, Schwartz, Fides Regina, Tao, Chaofan, Chen, Chaofan, Ren, Yinhao, Lo, Joseph Y., Rudin, Cynthia
Interpretability in machine learning models is important in high-stakes decisions, such as whether to order a biopsy based on a mammographic exam. Mammography poses important challenges that are not present in other computer vision tasks: datasets are small, confounding information is present, and it can be difficult even for a radiologist to decide between watchful waiting and biopsy based on a mammogram alone. In this work, we present a framework for interpretable machine learning-based mammography. In addition to predicting whether a lesion is malignant or benign, our work aims to follow the reasoning processes of radiologists in detecting clinically relevant semantic features of each image, such as the characteristics of the mass margins. The framework includes a novel interpretable neural network algorithm that uses case-based reasoning for mammography. Our algorithm can incorporate a combination of data with whole image labelling and data with pixel-wise annotations, leading to better accuracy and interpretability even with a small number of images. Our interpretable models are able to highlight the classification-relevant parts of the image, whereas other methods highlight healthy tissue and confounding information. Our models are decision aids, rather than decision makers, aimed at better overall human-machine collaboration. We do not observe a loss in mass margin classification accuracy over a black box neural network trained on the same data.
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Rudin, Cynthia, Chen, Chaofan, Chen, Zhi, Huang, Haiyang, Semenova, Lesia, Zhong, Chudi
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Wang, Yingfan, Huang, Haiyang, Rudin, Cynthia, Shaposhnik, Yaron
Dimension reduction (DR) techniques such as t-SNE, UMAP, and TriMAP have demonstrated impressive visualization performance on many real world datasets. One tension that has always faced these methods is the trade-off between preservation of global structure and preservation of local structure: these methods can either handle one or the other, but not both. In this work, our main goal is to understand what aspects of DR methods are important for preserving both local and global structure: it is difficult to design a better method without a true understanding of the choices we make in our algorithms and their empirical impact on the lower-dimensional embeddings they produce. Towards the goal of local structure preservation, we provide several useful design principles for DR loss functions based on our new understanding of the mechanisms behind successful DR methods. Towards the goal of global structure preservation, our analysis illuminates that the choice of which components to preserve is important. We leverage these insights to design a new algorithm for DR, called Pairwise Controlled Manifold Approximation Projection (PaCMAP), which preserves both local and global structure. Our work provides several unexpected insights into what design choices both to make and avoid when constructing DR algorithms.
Generalized and Scalable Optimal Sparse Decision Trees
Lin, Jimmy, Zhong, Chudi, Hu, Diane, Rudin, Cynthia, Seltzer, Margo
Decision tree optimization is notoriously difficult from a computational perspective but essential for the field of interpretable machine learning. Despite efforts over the past 40 years, only recently have optimization breakthroughs been made that have allowed practical algorithms to find optimal decision trees. These new techniques have the potential to trigger a paradigm shift where it is possible to construct sparse decision trees to efficiently optimize a variety of objective functions without relying on greedy splitting and pruning heuristics that often lead to suboptimal solutions. The contribution in this work is to provide a general framework for decision tree optimization that addresses the two significant open problems in the area: treatment of imbalanced data and fully optimizing over continuous variables. We present techniques that produce optimal decision trees over a variety of objectives including F-score, AUC, and partial area under the ROC convex hull. We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables and speeds up decision tree construction by several orders of magnitude relative to the state-of-the art.
Bandits for BMO Functions
Wang, Tianyu, Rudin, Cynthia
We study the bandit problem where the underlying expected reward is a Bounded Mean Oscillation (BMO) function. BMO functions are allowed to be discontinuous and unbounded, and are useful in modeling signals with infinities in the do-main. We develop a toolset for BMO bandits, and provide an algorithm that can achieve poly-log $\delta$-regret -- a regret measured against an arm that is optimal after removing a $\delta$-sized portion of the arm space.
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Wang, Caroline, Han, Bin, Patel, Bhrij, Mohideen, Feroze, Rudin, Cynthia
In recent years, academics and investigative journalists have criticized certain commercial risk assessments for their black-box nature and failure to satisfy competing notions of fairness. Since then, the field of interpretable machine learning has created simple yet effective algorithms, while the field of fair machine learning has proposed various mathematical definitions of fairness. However, studies from these fields are largely independent, despite the fact that many applications of machine learning to social issues require both fairness and interpretability. We explore the intersection by revisiting the recidivism prediction problem using state-of-the-art tools from interpretable machine learning, and assessing the models for performance, interpretability, and fairness. Unlike previous works, we compare against two existing risk assessments (COMPAS and the Arnold Public Safety Assessment) and train models that output probabilities rather than binary predictions. We present multiple models that beat these risk assessments in performance, and provide a fairness analysis of these models. Our results imply that machine learning models should be trained separately for separate locations, and updated over time.