Rudin, Cynthia
Online Coordinate Boosting
Pelossof, Raphael, Jones, Michael, Vovsha, Ilia, Rudin, Cynthia
We present a new online boosting algorithm for adapting the weights of a boosted classifier, which yields a closer approximation to Freund and Schapire's AdaBoost algorithm than previous online boosting algorithms. We also contribute a new way of deriving the online algorithm that ties together previous online boosting work. We assume that the weak hypotheses were selected beforehand, and only their weights are updated during online boosting. The update rule is derived by minimizing AdaBoost's loss when viewed in an incremental form. The equations show that optimization is computationally expensive. However, a fast online approximation is possible. We compare approximation error to batch AdaBoost on synthetic datasets and generalization error on face datasets and the MNIST dataset.
Analysis of boosting algorithms using the smooth margin function
Rudin, Cynthia, Schapire, Robert E., Daubechies, Ingrid
We introduce a useful tool for analyzing boosting algorithms called the ``smooth margin function,'' a differentiable approximation of the usual margin for boosting algorithms. We present two boosting algorithms based on this smooth margin, ``coordinate ascent boosting'' and ``approximate coordinate ascent boosting,'' which are similar to Freund and Schapire's AdaBoost algorithm and Breiman's arc-gv algorithm. We give convergence rates to the maximum margin solution for both of our algorithms and for arc-gv. We then study AdaBoost's convergence properties using the smooth margin function. We precisely bound the margin attained by AdaBoost when the edges of the weak classifiers fall within a specified range. This shows that a previous bound proved by R\"{a}tsch and Warmuth is exactly tight. Furthermore, we use the smooth margin to capture explicit properties of AdaBoost in cases where cyclic behavior occurs.
On the Dynamics of Boosting
Rudin, Cynthia, Daubechies, Ingrid, Schapire, Robert E.
In order to understand AdaBoost's dynamics, especially its ability to maximize margins, we derive an associated simplified nonlinear iterated map and analyze its behavior in low-dimensional cases. We find stable cycles for these cases, which can explicitly be used to solve for Ada-Boost's output. By considering AdaBoost as a dynamical system, we are able to prove Rätsch and Warmuth's conjecture that AdaBoost may fail to converge to a maximal-margin combined classifier when given a'nonoptimal' weaklearning algorithm.
On the Dynamics of Boosting
Rudin, Cynthia, Daubechies, Ingrid, Schapire, Robert E.
In order to understand AdaBoost's dynamics, especially its ability to maximize margins, we derive an associated simplified nonlinear iterated map and analyze its behavior in low-dimensional cases. We find stable cycles for these cases, which can explicitly be used to solve for Ada-Boost's output. By considering AdaBoost as a dynamical system, we are able to prove Rätsch and Warmuth's conjecture that AdaBoost may fail to converge to a maximal-margin combined classifier when given a'nonoptimal' weak learning algorithm.