Goto

Collaborating Authors

 Roy, Benjamin Van


Model-based Reinforcement Learning and the Eluder Dimension

Neural Information Processing Systems

We consider the problem of learning to optimize an unknown Markov decision process (MDP). We show that, if the MDP can be parameterized within some known function class, we can obtain regret bounds that scale with the dimensionality, rather than cardinality, of the system. We characterize this dependence explicitly as $\tilde{O}(\sqrt{d_K d_E T})$ where $T$ is time elapsed, $d_K$ is the Kolmogorov dimension and $d_E$ is the \emph{eluder dimension}. These represent the first unified regret bounds for model-based reinforcement learning and provide state of the art guarantees in several important settings. Moreover, we present a simple and computationally efficient algorithm \emph{posterior sampling for reinforcement learning} (PSRL) that satisfies these bounds.


Learning to Optimize via Information-Directed Sampling

Neural Information Processing Systems

We propose information-directed sampling -- a new algorithm for online optimization problems in which a decision-maker must balance between exploration and exploitation while learning from partial feedback. Each action is sampled in a manner that minimizes the ratio between the square of expected single-period regret and a measure of information gain: the mutual information between the optimal action and the next observation. We establish an expected regret bound for information-directed sampling that applies across a very general class of models and scales with the entropy of the optimal action distribution. For the widely studied Bernoulli and linear bandit models, we demonstrate simulation performance surpassing popular approaches, including upper confidence bound algorithms, Thompson sampling, and knowledge gradient. Further, we present simple analytic examples illustrating that information-directed sampling can dramatically outperform upper confidence bound algorithms and Thompson sampling due to the way it measures information gain.


Near-optimal Reinforcement Learning in Factored MDPs

Neural Information Processing Systems

Any reinforcement learning algorithm that applies to all Markov decision processes (MDPs) will suffer $\Omega(\sqrt{SAT})$ regret on some MDP, where $T$ is the elapsed time and $S$ and $A$ are the cardinalities of the state and action spaces. This implies $T = \Omega(SA)$ time to guarantee a near-optimal policy. In many settings of practical interest, due to the curse of dimensionality, $S$ and $A$ can be so enormous that this learning time is unacceptable. We establish that, if the system is known to be a \emph{factored} MDP, it is possible to achieve regret that scales polynomially in the number of \emph{parameters} encoding the factored MDP, which may be exponentially smaller than $S$ or $A$. We provide two algorithms that satisfy near-optimal regret bounds in this context: posterior sampling reinforcement learning (PSRL) and an upper confidence bound algorithm (UCRL-Factored).


Efficient Exploration and Value Function Generalization in Deterministic Systems

Neural Information Processing Systems

We consider the problem of reinforcement learning over episodes of a finite-horizon deterministic system and as a solution propose optimistic constraint propagation (OCP), an algorithm designed to synthesize efficient exploration and value function generalization. We establish that when the true value function lies within the given hypothesis class, OCP selects optimal actions over all but at most K episodes, where K is the eluder dimension of the given hypothesis class. We establish further efficiency and asymptotic performance guarantees that apply even if the true value function does not lie in the given hypothesis space, for the special case where the hypothesis space is the span of pre-specified indicator functions over disjoint sets.


(More) Efficient Reinforcement Learning via Posterior Sampling

Neural Information Processing Systems

Most provably efficient learning algorithms introduce optimism about poorly-understood states and actions to encourage exploration. We study an alternative approach for efficient exploration, posterior sampling for reinforcement learning (PSRL). This algorithm proceeds in repeated episodes of known duration. At the start of each episode, PSRL updates a prior distribution over Markov decision processes and takes one sample from this posterior. PSRL then follows the policy that is optimal for this sample during the episode. The algorithm is conceptually simple, computationally efficient and allows an agent to encode prior knowledge in a natural way. We establish an $\tilde{O}(\tau S \sqrt{AT} )$ bound on the expected regret, where $T$ is time, $\tau$ is the episode length and $S$ and $A$ are the cardinalities of the state and action spaces. This bound is one of the first for an algorithm not based on optimism and close to the state of the art for any reinforcement learning algorithm. We show through simulation that PSRL significantly outperforms existing algorithms with similar regret bounds.


Eluder Dimension and the Sample Complexity of Optimistic Exploration

Neural Information Processing Systems

This paper considers the sample complexity of the multi-armed bandit with dependencies among the arms. Some of the most successful algorithms for this problem use the principle of optimism in the face of uncertainty to guide exploration. The clearest example of this is the class of upper confidence bound (UCB) algorithms, but recent work has shown that a simple posterior sampling algorithm, sometimes called Thompson sampling, also shares a close theoretical connection with optimistic approaches. In this paper, we develop a regret bound that holds for both classes of algorithms. This bound applies broadly and can be specialized to many model classes. It depends on a new notion we refer to as the eluder dimension, which measures the degree of dependence among action rewards. Compared to UCB algorithm regret bounds for specific model classes, our general bound matches the best available for linear models and is stronger than the best available for generalized linear models.


Oblivious Equilibrium: A Mean Field Approximation for Large-Scale Dynamic Games

Neural Information Processing Systems

We propose a mean-field approximation that dramatically reduces the computational complexity of solving stochastic dynamic games. We provide conditions that guarantee our method approximates an equilibrium as the number of agents grow. We then derive a performance bound to assess how well the approximation performs for any given number of agents. We apply our method to an important class of problems in applied microeconomics. We show with numerical experiments that we are able to greatly expand the set of economic problems that can be analyzed computationally.



An Analysis of Turbo Decoding with Gaussian Densities

Neural Information Processing Systems

We provide an analysis of the turbo decoding algorithm (TDA) in a setting involving Gaussian densities. In this context, we are able to show that the algorithm converges and that - somewhat surprisingly - though the density generated by the TDA may differ significantly from the desired posterior density, the means of these two densities coincide.


An Analysis of Turbo Decoding with Gaussian Densities

Neural Information Processing Systems

We provide an analysis of the turbo decoding algorithm (TDA) in a setting involving Gaussian densities. In this context, we are able to show that the algorithm converges and that - somewhat surprisingly - though the density generated by the TDA may differ significantly from the desired posterior density, the means of these two densities coincide.