Roni Khardon
From Stochastic Planning to Marginal MAP
Hao(Jackson) Cui, Radu Marinescu, Roni Khardon
It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes two contributions in this context. The first is to provide an analysis of the recently developed SOGBOFA heuristic planning algorithm that was shown to be effective for problems with large factored state and action spaces. It is shown that SOGBOFA can be seen as a specialized inference algorithm that computes its solutions through a combination of a symbolic variant of belief propagation and gradient ascent. The second contribution is a new solver for Marginal MAP (MMAP) inference. We introduce a new reduction from MMAP to maximum expected utility problems which are suitable for the symbolic computation in SOGBOFA. This yields a novel algebraic gradient-based solver (AGS) for MMAP. An experimental evaluation illustrates the potential of AGS in solving difficult MMAP problems.
Sampling Networks and Aggregate Simulation for Online POMDP Planning
Hao(Jackson) Cui, Roni Khardon
The paper introduces a new algorithm for planning in partially observable Markov decision processes (POMDP) based on the idea of aggregate simulation. The algorithm uses product distributions to approximate the belief state and shows how to build a representation graph of an approximate action-value function over belief space.
Sampling Networks and Aggregate Simulation for Online POMDP Planning
Hao(Jackson) Cui, Roni Khardon
The paper introduces a new algorithm for planning in partially observable Markov decision processes (POMDP) based on the idea of aggregate simulation. The algorithm uses product distributions to approximate the belief state and shows how to build a representation graph of an approximate action-value function over belief space.
Excess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models
Rishit Sheth, Roni Khardon
Bayesian models are established as one of the main successful paradigms for complex problems in machine learning. To handle intractable inference, research in this area has developed new approximation methods that are fast and effective. However, theoretical analysis of the performance of such approximations is not well developed. The paper furthers such analysis by providing bounds on the excess risk of variational inference algorithms and related regularized loss minimization algorithms for a large class of latent variable models with Gaussian latent variables. We strengthen previous results for variational algorithms by showing that they are competitive with any point-estimate predictor. Unlike previous work, we provide bounds on the risk of the Bayesian predictor and not just the risk of the Gibbs predictor for the same approximate posterior. The bounds are applied in complex models including sparse Gaussian processes and correlated topic models. Theoretical results are complemented by identifying novel approximations to the Bayesian objective that attempt to minimize the risk directly. An empirical evaluation compares the variational and new algorithms shedding further light on their performance.
From Stochastic Planning to Marginal MAP
Hao(Jackson) Cui, Radu Marinescu, Roni Khardon
It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes two contributions in this context. The first is to provide an analysis of the recently developed SOGBOFA heuristic planning algorithm that was shown to be effective for problems with large factored state and action spaces. It is shown that SOGBOFA can be seen as a specialized inference algorithm that computes its solutions through a combination of a symbolic variant of belief propagation and gradient ascent. The second contribution is a new solver for Marginal MAP (MMAP) inference. We introduce a new reduction from MMAP to maximum expected utility problems which are suitable for the symbolic computation in SOGBOFA. This yields a novel algebraic gradient-based solver (AGS) for MMAP. An experimental evaluation illustrates the potential of AGS in solving difficult MMAP problems.