Not enough data to create a plot.
Try a different view from the menu above.
Roget, Mathieu
On Quantum Perceptron Learning via Quantum Search
Sun, Xiaoyu, Roget, Mathieu, Di Molfetta, Giuseppe, Kadri, Hachem
With the growing interest in quantum machine learning, the perceptron -- a fundamental building block in traditional machine learning -- has emerged as a valuable model for exploring quantum advantages. Two quantum perceptron algorithms based on Grover's search, were developed in arXiv:1602.04799 to accelerate training and improve statistical efficiency in perceptron learning. This paper points out and corrects a mistake in the proof of Theorem 2 in arXiv:1602.04799. Specifically, we show that the probability of sampling from a normal distribution for a $D$-dimensional hyperplane that perfectly classifies the data scales as $\Omega(\gamma^{D})$ instead of $\Theta({\gamma})$, where $\gamma$ is the margin. We then revisit two well-established linear programming algorithms -- the ellipsoid method and the cutting plane random walk algorithm -- in the context of perceptron learning, and show how quantum search algorithms can be leveraged to enhance the overall complexity. Specifically, both algorithms gain a sub-linear speed-up $O(\sqrt{N})$ in the number of data points $N$ as a result of Grover's algorithm and an additional $O(D^{1.5})$ speed-up is possible for cutting plane random walk algorithm employing quantum walk search.