Plotting

 Roderick, Melrose


Projected Off-Policy Q-Learning (POP-QL) for Stabilizing Offline Reinforcement Learning

arXiv.org Artificial Intelligence

A key problem in off-policy Reinforcement Learning (RL) is the mismatch, or distribution shift, between the dataset and the distribution over states and actions visited by the learned policy. This problem is exacerbated in the fully offline setting. The main approach to correct this shift has been through importance sampling, which leads to high-variance gradients. Other approaches, such as conservatism or behavior-regularization, regularize the policy at the cost of performance. In this paper, we propose a new approach for stable off-policy Q-Learning. Our method, Projected Off-Policy Q-Learning (POP-QL), is a novel actor-critic algorithm that simultaneously reweights off-policy samples and constrains the policy to prevent divergence and reduce value-approximation error. In our experiments, POP-QL not only shows competitive performance on standard benchmarks, but also out-performs competing methods in tasks where the data-collection policy is significantly sub-optimal.


Provably Safe PAC-MDP Exploration Using Analogies

arXiv.org Artificial Intelligence

A key challenge in applying reinforcement learning to safety-critical domains is understanding how to balance exploration (needed to attain good performance on the task) with safety (needed to avoid catastrophic failure). Although a growing line of work in reinforcement learning has investigated this area of "safe exploration," most existing techniques either 1) do not guarantee safety during the actual exploration process; and/or 2) limit the problem to a priori known and/or deterministic transition dynamics with strong smoothness assumptions. Addressing this gap, we propose Analogous Safe-state Exploration (ASE), an algorithm for provably safe exploration in MDPs with unknown, stochastic dynamics. Our method exploits analogies between state-action pairs to safely learn a near-optimal policy in a PAC-MDP sense. Additionally, ASE also guides exploration towards the most task-relevant states, which empirically results in significant improvements in terms of sample efficiency, when compared to existing methods. Source code for the experiments is available at https://github.com/locuslab/ase.


Deep Abstract Q-Networks

arXiv.org Artificial Intelligence

We examine the problem of learning and planning on high-dimensional domains with long horizons and sparse rewards. Recent approaches have shown great successes in many Atari 2600 domains. However, domains with long horizons and sparse rewards, such as Montezuma's Revenge and Venture, remain challenging for existing methods. Methods using abstraction (Dietterich 2000; Sutton, Precup, and Singh 1999) have shown to be useful in tackling long-horizon problems. We combine recent techniques of deep reinforcement learning with existing model-based approaches using an expert-provided state abstraction. We construct toy domains that elucidate the problem of long horizons, sparse rewards and high-dimensional inputs, and show that our algorithm significantly outperforms previous methods on these domains. Our abstraction-based approach outperforms Deep Q-Networks (Mnih et al. 2015) on Montezuma's Revenge and Venture, and exhibits backtracking behavior that is absent from previous methods.


Mean Actor Critic

arXiv.org Machine Learning

We propose a new algorithm, Mean Actor-Critic (MAC), for discrete-action continuous-state reinforcement learning. MAC is a policy gradient algorithm that uses the agent's explicit representation of all action values to estimate the gradient of the policy, rather than using only the actions that were actually executed. This significantly reduces variance in the gradient updates and removes the need for a variance reduction baseline. We show empirical results on two control domains where MAC performs as well as or better than other policy gradient approaches, and on five Atari games, where MAC is competitive with state-of-the-art policy search algorithms.