Goto

Collaborating Authors

 Rocktäschel, Tim


e-SNLI: Natural Language Inference with Natural Language Explanations

Neural Information Processing Systems

In order for machine learning to garner widespread public adoption, models must be able to provide interpretable and robust explanations for their decisions, as well as learn from human-provided explanations at train time. In this work, we extend the Stanford Natural Language Inference dataset with an additional layer of human-annotated natural language explanations of the entailment relations. We further implement models that incorporate these explanations into their training process and output them at test time. We show how our corpus of explanations, which we call e-SNLI, can be used for various goals, such as obtaining full sentence justifications of a model's decisions, improving universal sentence representations and transferring to out-of-domain NLI datasets. Papers published at the Neural Information Processing Systems Conference.


RTFM: Generalising to Novel Environment Dynamics via Reading

arXiv.org Artificial Intelligence

Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2$\pi$, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2$\pi$ generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2$\pi$ produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.


MVFST-RL: An Asynchronous RL Framework for Congestion Control with Delayed Actions

arXiv.org Machine Learning

Effective network congestion control strategies are key to keeping the Internet (or any large computer network) operational. Network congestion control has been dominated by hand-crafted heuristics for decades. Recently, ReinforcementLearning (RL) has emerged as an alternative to automatically optimize such control strategies. Research so far has primarily considered RL interfaces which block the sender while an agent considers its next action. This is largely an artifact of building on top of frameworks designed for RL in games (e.g. OpenAI Gym). However, this does not translate to real-world networking environments, where a network sender waiting on a policy without sending data is costly for throughput. We instead propose to formulate congestion control with an asynchronous RL agent that handles delayed actions. We present MVFST-RL, a scalable framework for congestion control in the QUIC transport protocol that leverages state-of-the-art in asynchronous RL training with off-policy correction. We analyze modeling improvements to mitigate the deviation from Markovian dynamics, and evaluate our method on emulated networks from the Pantheon benchmark platform. The source code is publicly available at https://github.com/facebookresearch/mvfst-rl.


TorchBeast: A PyTorch Platform for Distributed RL

arXiv.org Machine Learning

TorchBeast is a platform for reinforcement learning (RL) research in PyTorch. It implements a version of the popular IMPALA algorithm for fast, asynchronous, parallel training of RL agents. Additionally, TorchBeast has simplicity as an explicit design goal: We provide both a pure-Python implementation ("MonoBeast") as well as a multi-machine high-performance version ("PolyBeast"). In the latter, parts of the implementation are written in C++, but all parts pertaining to machine learning are kept in simple Python using PyTorch, with the environments provided using the OpenAI Gym interface. This enables researchers to conduct scalable RL research using TorchBeast without any programming knowledge beyond Python and PyTorch. In this paper, we describe the TorchBeast design principles and implementation and demonstrate that it performs on-par with IMPALA on Atari. TorchBeast is released as an open-source package under the Apache 2.0 license and is available at \url{https://github.com/facebookresearch/torchbeast}.


A Survey of Reinforcement Learning Informed by Natural Language

arXiv.org Artificial Intelligence

To be successful in real-world tasks, Reinforcement Learning (RL) needs to exploit the compositional, relational, and hierarchical structure of the world, and learn to transfer it to the task at hand. Recent advances in representation learning for language make it possible to build models that acquire world knowledge from text corpora and integrate this knowledge into downstream decision making problems. We thus argue that the time is right to investigate a tight integration of natural language understanding into RL in particular. We survey the state of the field, including work on instruction following, text games, and learning from textual domain knowledge. Finally, we call for the development of new environments as well as further investigation into the potential uses of recent Natural Language Processing (NLP) techniques for such tasks.


Learning to Speak and Act in a Fantasy Text Adventure Game

arXiv.org Artificial Intelligence

We introduce a large scale crowdsourced text adventure game as a research platform for studying grounded dialogue. In it, agents can perceive, emote, and act whilst conducting dialogue with other agents. Models and humans can both act as characters within the game. We describe the results of training state-of-the-art generative and retrieval models in this setting. We show that in addition to using past dialogue, these models are able to effectively use the state of the underlying world to condition their predictions. In particular, we show that grounding on the details of the local environment, including location descriptions, and the objects (and their affordances) and characters (and their previous actions) present within it allows better predictions of agent behavior and dialogue. We analyze the ingredients necessary for successful grounding in this setting, and how each of these factors relate to agents that can talk and act successfully.


e-SNLI: Natural Language Inference with Natural Language Explanations

Neural Information Processing Systems

In order for machine learning to garner widespread public adoption, models must be able to provide interpretable and robust explanations for their decisions, as well as learn from human-provided explanations at train time. In this work, we extend the Stanford Natural Language Inference dataset with an additional layer of human-annotated natural language explanations of the entailment relations. We further implement models that incorporate these explanations into their training process and output them at test time. We show how our corpus of explanations, which we call e-SNLI, can be used for various goals, such as obtaining full sentence justifications of a model's decisions, improving universal sentence representations and transferring to out-of-domain NLI datasets.


e-SNLI: Natural Language Inference with Natural Language Explanations

Neural Information Processing Systems

In order for machine learning to garner widespread public adoption, models must be able to provide interpretable and robust explanations for their decisions, as well as learn from human-provided explanations at train time. In this work, we extend the Stanford Natural Language Inference dataset with an additional layer of human-annotated natural language explanations of the entailment relations. We further implement models that incorporate these explanations into their training process and output them at test time. We show how our corpus of explanations, which we call e-SNLI, can be used for various goals, such as obtaining full sentence justifications of a model's decisions, improving universal sentence representations and transferring to out-of-domain NLI datasets.


Stable Opponent Shaping in Differentiable Games

arXiv.org Artificial Intelligence

A growing number of learning methods are actually \emph{games} which optimise multiple, interdependent objectives in parallel -- from GANs and intrinsic curiosity to multi-agent RL. Opponent shaping is a powerful approach to improve learning dynamics in such games, accounting for the fact that the 'environment' includes agents adapting to one another's updates. Learning with Opponent-Learning Awareness (LOLA) is a recent algorithm which exploits this dynamic response and encourages cooperation in settings like the Iterated Prisoner's Dilemma. Although experimentally successful, we show that LOLA can exhibit 'arrogant' behaviour directly at odds with convergence. In fact, remarkably few algorithms have theoretical guarantees applying across all differentiable games. In this paper we present Stable Opponent Shaping (SOS), a new method that interpolates between LOLA and a stable variant named LookAhead. We prove that LookAhead locally converges and avoids strict saddles in \emph{all differentiable games}, the strongest results in the field so far. SOS inherits these desirable guarantees, while also shaping the learning of opponents and consistently either matching or outperforming LOLA experimentally.


DiCE: The Infinitely Differentiable Monte-Carlo Estimator

arXiv.org Artificial Intelligence

The score function estimator is widely used for estimating gradients of stochastic objectives in stochastic computation graphs (SCG), eg, in reinforcement learning and meta-learning. While deriving the first-order gradient estimators by differentiating a surrogate loss (SL) objective is computationally and conceptually simple, using the same approach for higher-order derivatives is more challenging. Firstly, analytically deriving and implementing such estimators is laborious and not compliant with automatic differentiation. Secondly, repeatedly applying SL to construct new objectives for each order derivative involves increasingly cumbersome graph manipulations. Lastly, to match the first-order gradient under differentiation, SL treats part of the cost as a fixed sample, which we show leads to missing and wrong terms for estimators of higher-order derivatives. To address all these shortcomings in a unified way, we introduce DiCE, which provides a single objective that can be differentiated repeatedly, generating correct estimators of derivatives of any order in SCGs. Unlike SL, DiCE relies on automatic differentiation for performing the requisite graph manipulations. We verify the correctness of DiCE both through a proof and numerical evaluation of the DiCE derivative estimates. We also use DiCE to propose and evaluate a novel approach for multi-agent learning. Our code is available at https://www.github.com/alshedivat/lola.