Not enough data to create a plot.
Try a different view from the menu above.
Rocktäschel, Tim
Multi-Agent Diagnostics for Robustness via Illuminated Diversity
Samvelyan, Mikayel, Paglieri, Davide, Jiang, Minqi, Parker-Holder, Jack, Rocktäschel, Tim
In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which "masters" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.
Leading the Pack: N-player Opponent Shaping
Souly, Alexandra, Willi, Timon, Khan, Akbir, Kirk, Robert, Lu, Chris, Grefenstette, Edward, Rocktäschel, Tim
Reinforcement learning solutions have great success in the 2-player general sum setting. In this setting, the paradigm of Opponent Shaping (OS), in which agents account for the learning of their co-players, has led to agents which are able to avoid collectively bad outcomes, whilst also maximizing their reward. These methods have currently been limited to 2-player game. However, the real world involves interactions with many more agents, with interactions on both local and global scales. In this paper, we extend Opponent Shaping (OS) methods to environments involving multiple co-players and multiple shaping agents. We evaluate on over 4 different environments, varying the number of players from 3 to 5, and demonstrate that model-based OS methods converge to equilibrium with better global welfare than naive learning. However, we find that when playing with a large number of co-players, OS methods' relative performance reduces, suggesting that in the limit OS methods may not perform well. Finally, we explore scenarios where more than one OS method is present, noticing that within games requiring a majority of cooperating agents, OS methods converge to outcomes with poor global welfare.
Vision-Language Models as a Source of Rewards
Baumli, Kate, Baveja, Satinder, Behbahani, Feryal, Chan, Harris, Comanici, Gheorghe, Flennerhag, Sebastian, Gazeau, Maxime, Holsheimer, Kristian, Horgan, Dan, Laskin, Michael, Lyle, Clare, Masoom, Hussain, McKinney, Kay, Mnih, Volodymyr, Neitz, Alexander, Pardo, Fabio, Parker-Holder, Jack, Quan, John, Rocktäschel, Tim, Sahni, Himanshu, Schaul, Tom, Schroecker, Yannick, Spencer, Stephen, Steigerwald, Richie, Wang, Luyu, Zhang, Lei
Building generalist agents that can accomplish many goals in rich open-ended environments is one of the research frontiers for reinforcement learning. A key limiting factor for building generalist agents with RL has been the need for a large number of reward functions for achieving different goals. We investigate the feasibility of using off-the-shelf vision-language models, or VLMs, as sources of rewards for reinforcement learning agents. We show how rewards for visual achievement of a variety of language goals can be derived from the CLIP family of models, and used to train RL agents that can achieve a variety of language goals. We showcase this approach in two distinct visual domains and present a scaling trend showing how larger VLMs lead to more accurate rewards for visual goal achievement, which in turn produces more capable RL agents.
H-GAP: Humanoid Control with a Generalist Planner
Jiang, Zhengyao, Xu, Yingchen, Wagener, Nolan, Luo, Yicheng, Janner, Michael, Grefenstette, Edward, Rocktäschel, Tim, Tian, Yuandong
Humanoid control is an important research challenge offering avenues for integration into human-centric infrastructures and enabling physics-driven humanoid animations. The daunting challenges in this field stem from the difficulty of optimizing in high-dimensional action spaces and the instability introduced by the bipedal morphology of humanoids. However, the extensive collection of human motion-captured data and the derived datasets of humanoid trajectories, such as MoCapAct, paves the way to tackle these challenges. In this context, we present Humanoid Generalist Autoencoding Planner (H-GAP), a state-action trajectory generative model trained on humanoid trajectories derived from human motion-captured data, capable of adeptly handling downstream control tasks with Model Predictive Control (MPC). For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours. Further, without any learning from online interactions, it can also flexibly transfer these behaviors to solve novel downstream control tasks via planning. Notably, H-GAP excels established MPC baselines that have access to the ground truth dynamics model, and is superior or comparable to offline RL methods trained for individual tasks. Finally, we do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing. Code and videos are available at https://ycxuyingchen.github.io/hgap/.
The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs
Ruis, Laura, Khan, Akbir, Biderman, Stella, Hooker, Sara, Rocktäschel, Tim, Grefenstette, Edward
Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context -- incorporating its pragmatics. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response "I wore gloves" to the question "Did you leave fingerprints?" as meaning "No". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate four categories of widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), models in three of these categories perform close to random. However, LLMs instruction-tuned at the example-level perform significantly better. These results suggest that certain fine-tuning strategies are far better at inducing pragmatic understanding in models. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.
Dungeons and Data: A Large-Scale NetHack Dataset
Hambro, Eric, Raileanu, Roberta, Rothermel, Danielle, Mella, Vegard, Rocktäschel, Tim, Küttler, Heinrich, Murray, Naila
Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go [50], StarCraft [58], or DOTA [3], have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run [23]. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.
minimax: Efficient Baselines for Autocurricula in JAX
Jiang, Minqi, Dennis, Michael, Grefenstette, Edward, Rocktäschel, Tim
Unsupervised environment design (UED) is a form of automatic curriculum learning for training robust decision-making agents to zero-shot transfer into unseen environments. Such autocurricula have received much interest from the RL community. However, UED experiments, based on CPU rollouts and GPU model updates, have often required several weeks of training. This compute requirement is a major obstacle to rapid innovation for the field. This work introduces the minimax library for UED training on accelerated hardware. Using JAX to implement fully-tensorized environments and autocurriculum algorithms, minimax allows the entire training loop to be compiled for hardware acceleration. To provide a petri dish for rapid experimentation, minimax includes a tensorized grid-world based on MiniGrid, in addition to reusable abstractions for conducting autocurricula in procedurally-generated environments. With these components, minimax provides strong UED baselines, including new parallelized variants, which achieve over 120$\times$ speedups in wall time compared to previous implementations when training with equal batch sizes. The minimax library is available under the Apache 2.0 license at https://github.com/facebookresearch/minimax.
Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks
Jain, Samyak, Kirk, Robert, Lubana, Ekdeep Singh, Dick, Robert P., Tanaka, Hidenori, Grefenstette, Edward, Rocktäschel, Tim, Krueger, David Scott
Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining: does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that: (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.
Mix-ME: Quality-Diversity for Multi-Agent Learning
Ingvarsson, Garðar, Samvelyan, Mikayel, Lim, Bryan, Flageat, Manon, Cully, Antoine, Rocktäschel, Tim
In many real-world systems, such as adaptive robotics, achieving a single, optimised solution may be insufficient. Instead, a diverse set of high-performing solutions is often required to adapt to varying contexts and requirements. This is the realm of Quality-Diversity (QD), which aims to discover a collection of high-performing solutions, each with their own unique characteristics. QD methods have recently seen success in many domains, including robotics, where they have been used to discover damage-adaptive locomotion controllers. However, most existing work has focused on single-agent settings, despite many tasks of interest being multi-agent. To this end, we introduce Mix-ME, a novel multi-agent variant of the popular MAP-Elites algorithm that forms new solutions using a crossover-like operator by mixing together agents from different teams. We evaluate the proposed methods on a variety of partially observable continuous control tasks. Our evaluation shows that these multi-agent variants obtained by Mix-ME not only compete with single-agent baselines but also often outperform them in multi-agent settings under partial observability.
Evolving Curricula with Regret-Based Environment Design
Parker-Holder, Jack, Jiang, Minqi, Dennis, Michael, Samvelyan, Mikayel, Foerster, Jakob, Grefenstette, Edward, Rocktäschel, Tim
It remains a significant challenge to train generally capable agents with reinforcement learning (RL). A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from their generality, with theoretical guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces. By contrast, evolutionary approaches seek to incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. In this paper we propose to harness the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of the paper is available at accelagent.github.io.