Not enough data to create a plot.
Try a different view from the menu above.
Robert E. Schapire
On Oracle-Efficient PAC RL with Rich Observations
Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire
We study the computational tractability of PAC reinforcement learning with rich observations. We present new provably sample-efficient algorithms for environments with deterministic hidden state dynamics and stochastic rich observations. These methods operate in an oracle model of computation--accessing policy and value function classes exclusively through standard optimization primitives--and therefore represent computationally efficient alternatives to prior algorithms that require enumeration.
On Oracle-Efficient PAC RL with Rich Observations
Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire
We study the computational tractability of PAC reinforcement learning with rich observations. We present new provably sample-efficient algorithms for environments with deterministic hidden state dynamics and stochastic rich observations. These methods operate in an oracle model of computation--accessing policy and value function classes exclusively through standard optimization primitives--and therefore represent computationally efficient alternatives to prior algorithms that require enumeration.