Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Rixon Crane
DINGO: Distributed Newton-Type Method for Gradient-Norm Optimization
Rixon Crane, Fred Roosta
For optimization of a large sum of functions in a distributed computing environment, we present a novel communication efficient Newton-type algorithm that enjoys a variety of advantages over similar existing methods. Our algorithm, DINGO, is derived by optimization of the gradient's norm as a surrogate function. DINGO does not impose any specific form on the underlying functions and its application range extends far beyond convexity and smoothness. The underlying sub-problems of DINGO are simple linear least-squares, for which a plethora of efficient algorithms exist. DINGO involves a few hyper-parameters that are easy to tune and we theoretically show that a strict reduction in the surrogate objective is guaranteed, regardless of the selected hyper-parameters.
DINGO: Distributed Newton-Type Method for Gradient-Norm Optimization
Rixon Crane, Fred Roosta
For optimization of a large sum of functions in a distributed computing environment, we present a novel communication efficient Newton-type algorithm that enjoys a variety of advantages over similar existing methods. Our algorithm, DINGO, is derived by optimization of the gradient's norm as a surrogate function. DINGO does not impose any specific form on the underlying functions and its application range extends far beyond convexity and smoothness. The underlying sub-problems of DINGO are simple linear least-squares, for which a plethora of efficient algorithms exist. DINGO involves a few hyper-parameters that are easy to tune and we theoretically show that a strict reduction in the surrogate objective is guaranteed, regardless of the selected hyper-parameters.