Well File:

 Richard Zemel






Neural Guided Constraint Logic Programming for Program Synthesis

Neural Information Processing Systems

Synthesizing programs using example input/outputs is a classic problem in artificial intelligence. We present a method for solving Programming By Example (PBE) problems by using a neural model to guide the search of a constraint logic programming system called miniKanren. Crucially, the neural model uses miniKanren's internal representation as input; miniKanren represents a PBE problem as recursive constraints imposed by the provided examples. We explore Recurrent Neural Network and Graph Neural Network models.


Learning Latent Subspaces in Variational Autoencoders

Neural Information Processing Systems

Variational autoencoders (VAEs) [10, 20] are widely used deep generative models capable of learning unsupervised latent representations of data. Such representations are often difficult to interpret or control. We consider the problem of unsupervised learning of features correlated to specific labels in a dataset. We propose a VAE-based generative model which we show is capable of extracting features correlated to binary labels in the data and structuring it in a latent subspace which is easy to interpret. Our model, the Conditional Subspace VAE (CSVAE), uses mutual information minimization to learn a low-dimensional latent subspace associated with each label that can easily be inspected and independently manipulated. We demonstrate the utility of the learned representations for attribute manipulation tasks on both the Toronto Face [23] and CelebA [15] datasets.