Not enough data to create a plot.
Try a different view from the menu above.
Rekabdar, Banafsheh
Dynamic and Adaptive Feature Generation with LLM
Zhang, Xinhao, Zhang, Jinghan, Rekabdar, Banafsheh, Zhou, Yuanchun, Wang, Pengfei, Liu, Kunpeng
The representation of feature space is a crucial environment where data points get vectorized and embedded for upcoming modeling. Thus the efficacy of machine learning (ML) algorithms is closely related to the quality of feature engineering. As one of the most important techniques, feature generation transforms raw data into an optimized feature space conducive to model training and further refines the space. Despite the advancements in automated feature engineering and feature generation, current methodologies often suffer from three fundamental issues: lack of explainability, limited applicability, and inflexible strategy. These shortcomings frequently hinder and limit the deployment of ML models across varied scenarios. Our research introduces a novel approach adopting large language models (LLMs) and feature-generating prompts to address these challenges. We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process. Our approach broadens the applicability across various data types and tasks and draws advantages over strategic flexibility. A broad range of experiments showcases that our approach is significantly superior to existing methods.
A Survey of AI Music Generation Tools and Models
Zhu, Yueyue, Baca, Jared, Rekabdar, Banafsheh, Rawassizadeh, Reza
In this work, we provide a comprehensive survey of AI music generation tools, including both research projects and commercialized applications. To conduct our analysis, we classified music generation approaches into three categories: parameter-based, text-based, and visual-based classes. Our survey highlights the diverse possibilities and functional features of these tools, which cater to a wide range of users, from regular listeners to professional musicians. We observed that each tool has its own set of advantages and limitations. As a result, we have compiled a comprehensive list of these factors that should be considered during the tool selection process. Moreover, our survey offers critical insights into the underlying mechanisms and challenges of AI music generation.