Reif, Emily
Visualizing and Measuring the Geometry of BERT
Reif, Emily, Yuan, Ann, Wattenberg, Martin, Viegas, Fernanda B., Coenen, Andy, Pearce, Adam, Kim, Been
Transformer architectures show significant promise for natural language processing. Given that a single pretrained model can be fine-tuned to perform well on many different tasks, these networks appear to extract generally useful linguistic features. A natural question is how such networks represent this information internally. This paper describes qualitative and quantitative investigations of one particularly effective model, BERT. At a high level, linguistic features seem to be represented in separate semantic and syntactic subspaces.
Visualizing and Measuring the Geometry of BERT
Coenen, Andy, Reif, Emily, Yuan, Ann, Kim, Been, Pearce, Adam, Viégas, Fernanda, Wattenberg, Martin
Transformer architectures show significant promise for natural language processing. Given that a single pretrained model can be fine-tuned to perform well on many different tasks, these networks appear to extract generally useful linguistic features. A natural question is how such networks represent this information internally. This paper describes qualitative and quantitative investigations of one particularly effective model, BERT. At a high level, linguistic features seem to be represented in separate semantic and syntactic subspaces. We find evidence of a fine-grained geometric representation of word senses. We also present empirical descriptions of syntactic representations in both attention matrices and individual word embeddings, as well as a mathematical argument to explain the geometry of these representations.
Do Neural Networks Show Gestalt Phenomena? An Exploration of the Law of Closure
Kim, Been, Reif, Emily, Wattenberg, Martin, Bengio, Samy
One characteristic of human visual perception is the presence of `Gestalt phenomena,' that is, that the whole is something other than the sum of its parts. A natural question is whether image-recognition networks show similar effects. Our paper investigates one particular type of Gestalt phenomenon, the law of closure, in the context of a feedforward image classification neural network (NN). This is a robust effect in human perception, but experiments typically rely on measurements (e.g., reaction time) that are not available for artificial neural nets. We describe a protocol for identifying closure effect in NNs, and report on the results of experiments with simple visual stimuli. Our findings suggest that NNs trained with natural images do exhibit closure, in contrast to networks with randomized weights or networks that have been trained on visually random data. Furthermore, the closure effect reflects something beyond good feature extraction; it is correlated with the network's higher layer features and ability to generalize.
Bandit-Based Solar Panel Control
Abel, David (Brown University) | Williams, Edward C. (Brown University) | Brawner, Stephen (Brown University) | Reif, Emily (Brown University) | Littman, Michael L. (Brown University)
Solar panels sustainably harvest energy from the sun. To improve performance, panels are often equipped with a tracking mechanism that computes the sun’s position in the sky throughout the day. Based on the tracker’s estimate of the sun’s location, a controller orients the panel to minimize the angle of incidence between solar radiant energy and the photovoltaic cells on the surface of the panel, increasing total energy harvested. Prior work has developed efficient tracking algorithms that accurately compute the sun’s location to facilitate solar tracking and control. However, always pointing a panel directly at the sun does not account for diffuse irradiance in the sky, reflected irradiance from the ground and surrounding surfaces, power required to reorient the panel, shading effects from neighboring panels and foliage, or changing weather conditions (such as clouds), all of which are contributing factors to the total energy harvested by a fleet of solar panels. In this work, we show that a bandit-based approach can increase the total energy harvested by solar panels by learning to dynamically account for such other factors. Our contribution is threefold: (1) the development of a test bed based on typical solar and irradiance models for experimenting with solar panel control using a variety of learning methods, (2) simulated validation that bandit algorithms can effectively learn to control solar panels, and (3) the design and construction of an intelligent solar panel prototype that learns to angle itself using bandit algorithms.
Embedding Projector: Interactive Visualization and Interpretation of Embeddings
Smilkov, Daniel, Thorat, Nikhil, Nicholson, Charles, Reif, Emily, Viégas, Fernanda B., Wattenberg, Martin
Embeddings are ubiquitous in machine learning, appearing in recommender systems, NLP, and many other applications. Researchers and developers often need to explore the properties of a specific embedding, and one way to analyze embeddings is to visualize them. We present the Embedding Projector, a tool for interactive visualization and interpretation of embeddings.