Plotting

 Reichert, David


Scaling Instructable Agents Across Many Simulated Worlds

arXiv.org Artificial Intelligence

Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is a key challenge for creating general AI. Accomplishing this goal requires learning to ground language in perception and embodied actions, in order to accomplish complex tasks. The Scalable, Instructable, Multiworld Agent (SIMA) project tackles this by training agents to follow free-form instructions across a diverse range of virtual 3D environments, including curated research environments as well as open-ended, commercial video games. Our goal is to develop an instructable agent that can accomplish anything a human can do in any simulated 3D environment. Our approach focuses on language-driven generality while imposing minimal assumptions. Our agents interact with environments in real-time using a generic, human-like interface: the inputs are image observations and language instructions and the outputs are keyboard-and-mouse actions. This general approach is challenging, but it allows agents to ground language across many visually complex and semantically rich environments while also allowing us to readily run agents in new environments. In this paper we describe our motivation and goal, the initial progress we have made, and promising preliminary results on several diverse research environments and a variety of commercial video games.


Relational Deep Reinforcement Learning

arXiv.org Machine Learning

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.


Imagination-Augmented Agents for Deep Reinforcement Learning

Neural Information Processing Systems

We introduce Imagination-Augmented Agents (I2As), a novel architecture for deep reinforcement learning combining model-free and model-based aspects. In contrast to most existing model-based reinforcement learning and planning methods, which prescribe how a model should be used to arrive at a policy, I2As learn to interpret predictions from a trained environment model to construct implicit plans in arbitrary ways, by using the predictions as additional context in deep policy networks. I2As show improved data efficiency, performance, and robustness to model misspecification compared to several strong baselines.


The Predictron: End-To-End Learning and Planning

arXiv.org Artificial Intelligence

One of the key challenges of artificial intelligence is to learn models that are effective in the context of planning. In this document we introduce the predictron architecture. The predictron consists of a fully abstract model, represented by a Markov reward process, that can be rolled forward multiple "imagined" planning steps. Each forward pass of the predictron accumulates internal rewards and values over multiple planning depths. The predictron is trained end-to-end so as to make these accumulated values accurately approximate the true value function. We applied the predictron to procedurally generated random mazes and a simulator for the game of pool. The predictron yielded significantly more accurate predictions than conventional deep neural network architectures.


Learning model-based planning from scratch

arXiv.org Machine Learning

Conventional wisdom holds that model-based planning is a powerful approach to sequential decision-making. It is often very challenging in practice, however, because while a model can be used to evaluate a plan, it does not prescribe how to construct a plan. Here we introduce the "Imagination-based Planner", the first model-based, sequential decision-making agent that can learn to construct, evaluate, and execute plans. Before any action, it can perform a variable number of imagination steps, which involve proposing an imagined action and evaluating it with its model-based imagination. All imagined actions and outcomes are aggregated, iteratively, into a "plan context" which conditions future real and imagined actions. The agent can even decide how to imagine: testing out alternative imagined actions, chaining sequences of actions together, or building a more complex "imagination tree" by navigating flexibly among the previously imagined states using a learned policy. And our agent can learn to plan economically, jointly optimizing for external rewards and computational costs associated with using its imagination. We show that our architecture can learn to solve a challenging continuous control problem, and also learn elaborate planning strategies in a discrete maze-solving task. Our work opens a new direction toward learning the components of a model-based planning system and how to use them.